Morfometría

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Morfometría del griego μορϕή "morphé", que significa “forma” o “figura”, y μετρία “metría”, que significa “medición”. Se refiere al análisis cuantitativo de la forma, un concepto que abarca el tamaño y la forma. Los análisis morfométricos se realizan comúnmente en los organismos y son útiles en el análisis del registro fósil, así como en el impacto de algunas mutaciones sobre la forma, cambios en los procesos del desarrollo, covarianzas entre los factores ambientales y la forma, igualmente para estimar los parámetros genético-cuantitativos de la forma. La morfometría se puede utilizar para cuantificar un carácter de significancia evolutiva, y para detectar los cambios en la forma, deducir algo sobre la ontogenia de los organismos, función o relaciones evolutivas. Uno de los objetivos principales de la morfometría es probar estadísticamente las hipótesis sobre los factores que afectan la forma.

Morfometría Clásica[editar]

La morfometría clásica produce imágenes o descripciones detalladas en donde las analogías figuran prominentemente (formas parecidas a círculos, elipses, triángulos, etc.). Los estudios morfométricos clásicos producen comúnmente tablas de caracteres medidos en escalas continuas que reflejan aspectos de la forma del organismo. Como resultado, la morfometría ha sido vista cercana a la estadística o al algebra más que a la morfología, y en cierto sentido esa percepción es correcta: la morfometría es una rama del análisis matemático de la forma. Tradicionalmente los datos morfométricos han incluido medidas de longitud, profundidad y amplitud. Este tipo de datos contiene relativamente poca información acerca de la forma y parte de esa información puede ser ambigua. Ese tipo de datos contiene menos información de lo que parecen sostener porque muchas de las mediciones se superponen o son redundantes. Varias de las mediciones parten desde un único punto en un organismo, por lo que sus valores no pueden ser completamente independientes. Esto significa que cualquier error en la localización de ese punto afecta a todas estas mediciones, la sobre posición de las mediciones complica el describir diferencias localizadas de la forma como los cambios en la posición relativa de un carácter respecto a la posición de otro carácter (Atchley et al, 1976; Corruccini, 1977; Albrecht, 1978). Una limitación de la morfometría tradicional es que las medidas no transmiten información sobre la estructura geométrica, sino que se trata usualmente de segmentos lineales. Las mediciones lineales representan mayoritariamente el tamaño más que la forma. Cada longitud es la magnitud de una dimensión, una medida del tamaño y no necesariamente incluye información geométrica de la forma.

Cuando todas las limitaciones de la morfometría tradicional son consideradas, es evidente que podrían existir numerosas mediciones, pero poca información sobre la forma (Atchley y Anderson, 1978; Hills, 1978; Dodson, 1978). En respuesta a estas críticas sobre la morfometría tradicional surgió lo que conocemos como Morfometría geométrica

Véase también[editar]