Paramagnetismo de Van Vleck
La ecuación de van Vleck es una expresión matemática debida a John Hasbrouck van Vleck, que relaciona la susceptibilidad magnética de un sistema con la población térmica de sus niveles de energía y sus respectivos momentos magnéticos. La variación del momento magnético promedio con un cambio diferencial de la temperatura se relaciona directamente con la susceptibilidad magnética. Esta ecuación es aplicable a sistemas estricta o aproximadamente paramagnéticos, por lo que da nombre al paramagnetismo de van Vleck.
Ecuación general
Se parte del siguiente par de aproximaciones:
- es posible expresar la energía Wi de cada nivel i del total de n niveles como serie de potencias en función de la intensidad de campo magnético H:
- la susceptibilidad magnética es independiente del campo. En la práctica esto suele traducirse en que la ecuación sólo es aplicable a sistemas lejos de la saturación y en los que la interacción entre centros magnéticos es despreciable.
La segunda aproximación es equivalente a descartar los términos de orden igual o superior a tres en la primera expresión: la primera derivada de la energía frente al campo se relaciona con el momento magnético y la segunda con la susceptibilidad.
A partir de estas aproximaciones es posible llegar a la ecuación de van Vleck:
donde:
- k es la constante de Boltzmann y
- N es el número de Avogadro.
Casos particulares
Resulta útil considerar una serie de situaciones simplificadas, que dan resultados sencillos que son aproximadamenta aplicables a situaciones comunes.
Paramagnetismo independiente de la temperatura
Si el estado fundamental no tiene momento magnético y el estado más próximo con momento magnético se encuentra a una energía muy superior a k·T, la única contribución significativa a la susceptibilidad proviene de los términos W(2)i de i>1. Puesto que todos los términos que dependen de la temperatura se anulan, resulta un paramagnetismo independiente de la temperatura. Este efecto es de especial relevancia cuando es la única contribución al magnetismo, pero en general puede ser una corrección significativa a la susceptibilidad de muchos sistemas, comparable en orden de magnitud a la corrección diamagnética que se calcula con las tablas de Pascal, sólo que de signo opuesto.
Referencias
- van Vleck, J. H. (1932). The theory of electric and magnetic susceptibilities (en inglés). London: Oxford University Press. p. 182. Una de las referencias originales.
- Teodoro Meruane, Verónica Sandoval, Rossana Peña. «Teoría del paramagnetismo en complejos octaédricos regulares de lantánidos trivalentes» (pdf). Consultado el 8 de julio de 2010. Los capítulos 3 y 4 de este texto explican muy adecuadamente la ecuación de van Vleck y sus principales casos particulares.