Ir al contenido

Constante de Gauss

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 14:48 13 jun 2014 por Asdasdasdewfwefwefewfewfef (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

En matemática, la constante de Gauss, denotada mediante la letra G, es definida como la inversa de la media aritmético-geométrica de 1 y la raíz cuadrada de 2:

La constante es así llamada en honor a Carl Friedrich Gauss, quien el 30 de mayo de 1799, descubrió que

así pues:

donde B denota la función beta de Euler.

Relaciones con otras contantes

La constante de Gauss puede ser usada para expresar el valor particular de la función gamma si el argumento es 1/4:

y puesto que π y Γ(1/4) son algebraicamente independientes con Γ(1/4) e irracionales, la constante de Gauss es también un número trascendente.

Constantes de la lemniscata

La constantes de Gauss también puede ser usada en la definición de las constantes de la lemniscata; la primera de éstas es:

y la segunda constante:

las cuales se plantean en problemas de cálculo de longitud de arco de una lemniscata.

Otras fórmulas

Una fórmula que expresa G en términos funciones theta de Jacobi es la siguiente:

También hay representaciones en forma de series de convergencia rápida, como puede ser la siguiente:

La constante puede ser expresada también mediante un producto infinito

así como en forma de fracción continua mediante la siguiente secuencia: [0, 1, 5, 21, 3, 4, 14, ...].

Referencias