Circuito

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 18:34 18 sep 2020 por Tecinfor (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

Un circuito es una interconexión de componentes eléctricos (como baterías, resistores, inductores, condensadores, interruptores, transistores, entre otros) que transporta corriente eléctrica a través de por lo menos una trayectoria cerrada.

Un circuito lineal, que consta de fuentes, componentes lineales (resistencias, condensadores, inductores) y elementos de distribución lineales (líneas de transmisión o cables), tiene la propiedad de la superposición lineal. Además, son más fáciles de analizar, usando métodos en el dominio de la frecuencia, para determinar su respuesta en corriente directa, en corriente alterna y transitoria.

Un circuito resistivo es un circuito que contiene solo resistencias, fuentes de voltaje y corriente. El análisis de circuitos resistivos es menos complicado que el análisis de circuitos que contienen capacitores e inductores. Si las fuentes son de corriente directa (corriente continua), se denomina circuito de corriente directa (o continua).

Un circuito que tiene componentes electrónicos se denomina circuito electrónico. Generalmente, estas redes son no lineales y requieren diseños y herramientas de análisis mucho más complejos.

Elementos de un circuito

Circuito cerrado
Figura 1: Circuito ejemplo.
  • Componente: un dispositivo con dos o más terminales en el que puede fluir interiormente una carga. En la figura 1 se ven 9 componentes entre resistores y fuentes.
  • Nodo: punto de un circuito donde concurren más de dos conductores. A, B, C, D, E son nodos. C no se considera un nuevo nodo, porque se puede considerar el mismo nodo que A, ya que entre ellos no existe diferencia de potencial o tener tensión 0 (VA - VC = 0).
  • Rama: porción del circuito comprendida entre dos nodos consecutivos. En la figura 1 hay siete ramales: AB por la fuente, BC por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal solo puede circular una corriente.
  • Malla: cualquier camino cerrado en un circuito eléctrico.
  • Fuente: componente que se encarga de proporcionar energía eléctrica al circuito entero. En el circuito de la figura 1 hay tres fuentes: una de intensidad, I, y dos de tensión, E1 y E2.
  • Conductor: es un objeto de material que permite el libre flujo de corriente,-sin resistencia-, haciendo contacto entre dos o más componentes electrónicos.

Clasificación

Los circuitos eléctricos se clasifican de la siguiente forma:

Leyes fundamentales

Las leyes fundamentales que rigen en cualquier circuito eléctrico son:

  • Ley de corriente de Kirchhoff: la suma de las corrientes que entran por un nodo debe ser igual a la suma de las corrientes que salen por ese nodo.
  • Ley de tensiones de Kirchhoff: la suma de las tensiones en un lazo debe ser 0.
  • Ley de Ohm: el flujo de la corriente es directamente proporcional al voltaje, e inversamente proporcional a la resistencia.
  • Teorema de Norton: cualquier red lineal que tenga una fuente de tensión o de corriente y al menos una resistencia es equivalente a una fuente ideal de corriente en paralelo con una resistencia.
  • Teorema de Thévenin: cualquier red lineal que tenga una fuente de tensión o de corriente y al menos una resistencia es equivalente a una fuente ideal de tensión en serie con una resistencia.
  • Teorema de superposición: en una red eléctrica lineal con varias fuentes independientes, la respuesta de una rama determinada cuando todas las fuentes están activas simultáneamente es igual a la suma lineal de las respuestas individuales tomando una fuente independiente a la vez.

Si el circuito contiene componentes no lineales y reactivos, pueden necesitarse otras leyes más complejas. Su aplicación genera un sistema de ecuaciones que puede resolverse ya sea de forma algebraica o numérica.

Métodos de diseño

Para diseñar cualquier circuito eléctrico, ya sea analógico o digital, los ingenieros eléctricos deben ser capaces de predecir las tensiones y corrientes de todo el circuito. Los circuitos lineales, es decir, circuitos con la misma frecuencia de entrada y salida, pueden analizarse a mano usando la teoría de los números complejos. Otros circuitos solo pueden analizarse con programas informáticos especializados o con técnicas de estimación como el método de linealización.

Los programas informáticos de simulación de circuitos, como SPICE, y lenguajes como VHDL y Verilog, permiten a los ingenieros diseñar circuitos sin el tiempo, gasto y riesgo que tiene el construir un circuito prototipo.

Si el circuito eléctrico tiene componentes no lineales y reactivos, pueden necesitarse otras leyes mucho más complejas. Al aplicar estas leyes o teoremas se producirá un sistema de ecuaciones lineales que puede resolverse manualmente o por computadora.

Véase también

Enlaces externos

Referencias

Bibliografía