Ir al contenido

Capacitación (citología)

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 13:42 1 ago 2014 por Grillitus (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
El proceso de capacitación se asocia con un movimiento vigoroso de gran desplazamiento lateral de la cabeza del espermatozoide y baja linealidad llamado "hiperactivación"..[1]

La capacitación es la fase final del desarrollo del espermatozoide donde adquiere la habilidad de fecundar al ovocito.[2]​ In vivo ocurre tras la eyaculación, cuando los espermatozoides entran en contacto con los diferentes fluidos del tracto genital femenino. Tras la eyaculación, los espermatozoides no se capacitan todos a la vez, de modo que cuando encuentren al ovocito algunos ya habrán completado este proceso. Durante la capacitación, el espermatozoide experimenta una serie de cambios:

  • Adquiere la capacidad de unirse a la zona pelúcida del ovocito y de llevar a cabo la reacción acrosómica.
  • El movimiento del espermatozoide deja de ser rectilíneo para desplazarse con un movimiento oscilante provocado por unos fuertes impulsos de la cabeza hacia derecha e izquierda.

In vitro, la capacitación ocurre tras el lavado y purificación de los espermatozoides. A pesar de que se desconoce la naturaleza exacta de la capacitación (se asocia al movimiento hiperactiva de los espermatozoides) se la considera etapa necesaria para que el espermatozoide pueda fecundar al ovocito.[1]

Capacitación in vitro

In vitro, existen varias técnicas para realizar este proceso. Algunas de ellas son el lavado simple, la migración (Swim-up), los gradientes de densidad o la filtración.[3]

La capacitación in vitro, también llamada «recuperación de espermatozoides móviles» (REM), junto con el seminograma sirve para decidir el tratamiento de reproducción asistida más adecuado a emplear.[3]​ La capacitación "in vitro" se realizará en el caso de que sea necesario un tratamiento de FIV o de ICSI, y el método empleado para la capacitación dependerá del resultado del seminograma. Así, si la muestra de semen tiene una cantidad de espermatozoides alta y con una movilidad aceptable, se realizará la capacitación mediante Swin-up, mientras que si la concentración es baja y hay poca viabilidad o movilidad, se realizará la capacitación mediante gradientes.

El objetivo de estas técnicas de capacitación es el enriquecimiento de la muestra de la mayor cantidad posible de espermatozoides móviles y funcionales sin que se dañe su fisiología.Se considera un buen capacitado (ya sea para inseminación artificial o FIV) aquel que contenga más del 85% de formas A+B, y en total un número mayor de 1x10^6 de espermatozoides A+B (concentración final de 20x10^6 espermatozoides/ml en 50 microlitros). En el proceso de capacitado,además, se eliminarán espermatozoides inmóviles y plasma seminal, que tiene sustancias tóxicas o bioactivas que dañan a los espermatozoides, principalmente por estrés oxidativo. También se eliminan prostaglandinas que se encuentran en pequeñas concentraciones en el semen, y que podrían causar dolor uterino en la mujer.[4]

También es interesante para el laboratorio el que sean técnicas que permitan procesar grandes volúmenes de eyaculados para poder así acelerar el proceso para los diversos pacientes.

Lavado simple

Consiste en la centrifugación de la muestra seminal a 400 g para eliminar el plasma seminal de la misma y concentrar los espermatozoides en un pequeño volumen. Con este método lo único que se consigue es concentrar los espermatozoides, pero no supone ningún método de selección. Es el paso previo a los demás tipos de capacitación; sin embargo, normalmente no se realiza este tipo de capacitación por sí sola, sólo en casos de oligozoospermias graves, criptozoospermias o en muestras de biopsias testiculares. Esto se debe a que la muestra no está enriquecida, como en los otros métodos de capacitación, en espermatozoides móviles (A+B), a que se concentran los espermatozoides junto con muchos radicales libres que pueden disminuir su calidad y a que no son válidos para inseminación artificial ni inseminación in Vitro estándar. Como ventajas de este método, es sencillo y barato, puede realizarse con cualquier muestra y la pérdida de espermatozoides es mínima.

Swim-up

Tras una centrifugación a 400 g durante 10 minutos de la muestra de semen (lavado) se elimina el plasma seminal y se añade de 0.5 a 1 ml de medio de cultivo. Esto se mantiene durante 45 minutos en un incubador a 37 ºC con un 5% de CO2. Los espermatozoides con mejor movilidad ascenderán desde la pella hacia la superficie del medio en este tiempo. Al retirar la superficie del sobrenadante a los 45 minutos se tendrá un medio rico en espermatozoides de gran movilidad. Sin embargo, se pierden gran parte de los espermatozoides de alta movilidad ya que se encuentran en zonas más profundas de la pella y no pueden ascender. Esta técnica aún se usa mucho en los laboratorios de fecundación in Vitro, especialmente en casos de normozoospermia ya que se consiguen concentraciones superiores al 90% de A+B y es un método muy barato y fácil de realizar. Como inconvenientes además de la gran pérdida de espermatozoides A+B, al igual que en el lavado se mantiene a los espermatozoides en un medio rico en radicales libres, además de que sólo puede realizarse con muestras de elevada concentración y movilidad.

Gradiente de densidad

Este método consiste en centrifugar la muestra de esperma para hacerla pasar a través de un coloide en forma de gradiente continuo o discontinuo. En el pasado se empleó Percoll para su realización, que consiste en partículas de sílice rodeadas de polivinilpirrolidona, abreviado como povidona o PVP, y que permite realizar separaciones mediante centrifugación por gradiente de densidad. Sin embargo, en la actualidad, otros coloides como PureSperm o SpermGrad han desplazado al Percoll en este tipo de técnicas debido a la presencia de algunas endotoxinas.

Una vez establecido el gradiente, la muestra de esperma se deposita en la zona superior y se somete a centrifugación. Todas las células descienden debido a dicha centrifugación, atravesando dos (45%, 90%) o tres (45%, 60%, 90%) capas de distinta densidad, pero los espermatozoides con mayor movilidad (A+B) serán capaces de llegar al fondo más rápidamente, mientras que los de tipo C o D, con menor grado de libertad o inmóviles, quedarán retenidos. Es importante destacar que en esta técnica la fracción de interés es la que queda en el fondo del tubo, la de mayor densidad, ya que es en ella donde se encuentran los espermatozoides con mejor movilidad.

La capacitación espermática se usa principalmente en casos de oligozoospermia, astenozoospermia y muestras con abundantes células y detritos. Ofrece múltiples ventajas, ya que se recuperan gran cantidad de espermatozoides y con muy buena movilidad, pudiendo emplearse en muestras patológicas y dejando la muestra limpia de células inmóviles, debris y tóxicos. Sin embargo, es una técnica cara y relativamente difícil de realizar, ya que la preparación de los gradientes debe realizarse con cuidado y de forma precisa, sin que se mezclen las distintas fases. Además, existe el riesgo de la presencia de endotoxinas en las muestras capacitadas.

Filtración

Es un método que ya está quedando obsoleto y que incluye la filtración de las muestras mediante fibra o perlas de vidrio, columnas de sephadex o migración transmembrana (Nucleopore). En este caso, solo los espermatozoides más móviles serán capaces de nadar y atravesar el sistema de filtración.

Capacitado

Una buena muestra de capacitado podrá ser utilizada para la inseminación artificial como para realizar ciclos de FIV. Las características que ha de presentar un capacitado para ser considerado de buena calidad son las siguientes:

  • Más del 85% de los espermatozoides con una calidad A (muy buena) + B (buena)
  • Más de 10.000.00 de espermatozoides en el total de la muestra capacitada. Lo que equivale a:
  • Concentración final de 20.000.000 de espermatozoides por mililitro en un total de 50microlitros.
  • 40000000 espermatozoides en el eyaculado >> recuperación del 5%
  • Recuperación 20% >> 5.000.000 espermatozoides por mililitro.

REM + Seminograma

La recuperación de espermatozoides móviles (REM) es un concepto sinónimo a la capacitación. REM junto al seminograma nos proporciona la información necesaria para decidir el tipo de tratamiento que será necesario realizar a la pareja para que quede embarazada: coitos programados, inseminación artificial, FIV estándar, ICSI o si será necesario recurrir a un banco de semen.

  • Conteo simple: cencentración y movilidad.
  • Seminograma: cocentración, movilidad y morfología.
  • Seminograma + REM: seminograma + capacitación.

Según los parámetros obtenidos por el seminograma + REM tomaremos las siguientes decisiones:

  • > 1.000.000 de espermatozoiedes A + B: se pueden realizar tanto coitos programados, como inseminación artificial o FIV estándar. La elección del método´exacto dependerá de las características de la pareja en concreto.
  • < 1.000.000 de espermatozoiedes A + B: la pareja será sometida a ICSI.
  • Azoospermia o ausencia de espermatozoides móviles: en este caso es necesario realizar una biopsia diagnóstica de los testículos. Si se encuentran espermatozoides se realizará ICSI, pero en caso contrario será necesario recurrir a un banco de semen.

Referencias

  1. a b CARDONA-MAYA, W.D. y CADAVID, A.P.. Evaluación de la reacción acrosomal en espermatozoides humanos inducida por los monosacáridos manosa y N-acetilglucosamina (en español). Actas Urol Esp [online]. 2005, vol.29, n.7 [citado 2010-01-07], pp. 676-684. ISSN 0210-4806.
  2. Essential Reproduction, Johnson, 6th edition, Blackwell Publishing
  3. a b Anselmo, G. J; Arrau, E. J; Gutiérrez, R. A; Canales, B. S; Casanova, Z. D. Separación espermática por swim-up: estudio comparativo utilizando BWW,F10 y líquido amniótico humano (en español). Rev. chil. obstet. ginecol;55(5):336-41, 1990. Último acceso 9 de enero de 2010.
  4. Berne Y Levy Fisiologia Escrito por Matthew N. Levy, Bruce M. Koeppen, Bruce A. Stanton, Robert M Berne