Radiación de Hawking

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
El descubrimiento de que los agujeros negros emitían radiación revolucionó su búsqueda. En la actualidad se cree que muchas galaxias suelen tener uno en su centro, incluida la nuestra.

La radiación de Hawking es un tipo de radiación producida en el horizonte de sucesos de un agujero negro y debida plenamente a efectos de tipo cuántico. La radiación de Hawking recibe su nombre del físico británico Stephen Hawking, quien postuló su existencia por primera vez en 1974 describiendo las propiedades de tal radiación y obteniendo algunos de los primeros resultados en gravedad cuántica. El trabajo de Hawking fue posterior a su visita a Moscú en 1973, donde los científicos rusos Yákov Zeldóvich y Alekséi Starobinski le demostraron que, de acuerdo con el principio de indeterminación de la mecánica cuántica, los agujeros negros en rotación deberían crear y emitir partículas.[1]

La radiación de Hawking reduce la masa y la energía rotacional de los agujeros negros y, por lo tanto, también se conoce como "evaporación de agujeros negros". Debido a esto, se espera que los agujeros negros que no ganan masa por otros medios se encojan y finalmente desaparezcan. Se predice que los micro agujeros negros son ​​mayores emisores de radiación que los agujeros negros más masivos y, por lo tanto, deberían reducirse y disiparse más rápidamente.[2]

En junio de 2008, NASA lanzó el telescopio espacial Fermi, que está buscando los destellos terminales de rayos gamma que se esperan de la evaporación agujero negro primordial s. En el caso de que las teorías especulativas gran dimensión extra sean correctas, CERN Gran Colisionador de Hadrones puede crear microagujeros negros y observar su evaporación. No se ha observado ningún micro agujero negro en el CERN.[3][4]

Posteriormente Paul Davies[5]​ y Bill Unruh[6]​ probaron que un observador acelerado u observador de Rindler en un espacio-tiempo plano de Minkowski también detectaría radiación de tipo Hawking.

Origen de la radiación de Hawking[editar]

Una de las consecuencias del principio de indeterminación de Heisenberg son las fluctuaciones cuánticas del vacío. Estas consisten en la creación, durante brevísimos instantes, de pares partícula-antipartícula a partir del vacío. Estas partículas son "virtuales", pero la intensa gravedad del agujero negro las transforma en reales. Tales pares se desintegran rápidamente entre sí, devolviendo la energía prestada para su formación. Sin embargo, en el límite del horizonte de sucesos de un agujero negro, la probabilidad de que un miembro del par se forme desde el interior y el otro en el exterior no es nula, por lo que uno de los componentes del par podría escapar del agujero negro; si la partícula logra escapar, la energía procederá del agujero negro. Es decir, el agujero negro deberá perder energía para compensar la creación de las dos partículas que separó. Este fenómeno tiene como consecuencias la emisión neta de radiación por parte del agujero negro y la disminución de masa de este.

Según esta teoría, un agujero negro va perdiendo masa, a un ritmo inversamente proporcional a esta, debido a un efecto cuántico. Es decir, un agujero negro poco masivo desaparecerá más rápidamente que uno más masivo. Concretamente, un agujero negro de dimensiones subatómicas desaparecería casi instantáneamente.

Cabe mencionar que la disminución de masa de un agujero negro por radiación de Hawking sería únicamente perceptible en escalas de tiempo comparables a la edad del universo y tan solo en agujeros negros de tamaño microscópico remanentes quizás de la época inmediatamente posterior al Big Bang. Si esto es así, hoy podríamos ver explosiones de agujeros negros muy pequeños, algo de lo que no se tiene evidencia alguna.

Proceso de emisión[editar]

Un agujero negro emite radiación de Hawking termalizada, según una distribución idéntica a la del cuerpo negro correspondiente a una temperatura . La cual, expresada en términos de las unidades de Planck, resulta ser:

(1a)

Donde es un parámetro relacionado con la gravedad en la superficie del horizonte. Análogamente, un observador de Rindler con una aceleración uniforme percibe a su alrededor una radiación termalizada asociada a una temperatura de cuerpo negro:

(2a)

Donde es la aceleración en unidades de Planck, obviamente la expresión (1a) y (2a) resultan formalmente idénticas expresadas en unidades de Planck.

Si reescribimos las dos ecuaciones anteriores en unidades convencionales, la radiación de Hawking para un agujero Schwarzschild y la radiación de Unruh para un observador acelerado son:

donde:

, es la constante reducida de Planck.
c es la velocidad de la luz
k es la constante de Boltzmann
G la constante gravitacional
M es la masa de un agujero negro.
a es la aceleración del observador de Rindler.

Aplicando las ecuaciones anteriores al caso solar, si éste se llegara a convertir en un agujero negro, tendría una temperatura de radiación de tan sólo 60 nK (nanokelvin). Esta temperatura de radiación es notablemente inferior a la temperatura debida a la radiación de fondo de microondas, que es superior a los 2.7 K, por lo que si existe la radiación de Hawking, ésta podría ser indetectable.


Evaporación de agujero negro[editar]

Cuando las partículas escapan, el agujero negro pierde una pequeña cantidad de su energía y, por lo tanto, parte de su masa (masa y energía están relacionadas por ecuación de Einstein E ' '=' 'mc' ' 2 ).

Análisis numérico de la página de 1976[editar]

En 1976 Don Page calculó la potencia producida, y el tiempo de evaporación, para un agujero negro Schwarzschild sin masa [{mvar | M}}.[7]​Los cálculos son complicado por el hecho de que un agujero negro, siendo de tamaño finito, no es un cuerpo negro perfecto; la sección transversal de absorción desciende de una manera complicada, espín dependiente a medida que disminuye la frecuencia, especialmente cuando la longitud de onda se vuelve comparable al tamaño del horizonte de eventos. Tenga en cuenta que al escribir en 1976, Page postula erróneamente que los neutrinos no tienen masa y que solo existen dos sabores de neutrinos, y por lo tanto sus resultados de la vida de los agujeros negros no coinciden con los resultados modernos que tienen en cuenta 3 sabores de neutrinos con masas distintas de cero.

Para una masa mucho mayor que 1017 gramos, Page deduce que la emisión de electrones puede ignorarse, y que los agujeros negros de masa M en gramos se evaporan a través de neutrinos, fotones y gravitones sin masa de electrones y muones, en un tiempo τ de

Para masa más pequeña de 1017 g, pero mucho más grande, la emisión de ultrarelativistic limit[8]​ electrones and positrones will aceleraran la evaporación, dando una vida de


Véase también[editar]

Referencia[editar]

  1. A Brief History of Time', Stephen Hawking, Bantam Books, 1988.
  2. Olier, Lázaro (28 de junio de 2019). «El ojo de Dios, también conocido como Google Maps». Octante (3): e012. ISSN 2525-0914. doi:10.24215/25250914e012. Consultado el 11 de noviembre de 2019. 
  3. https://cerncourier.com/cws/article/cern/29199
  4. https://www.timesonline.co.uk/tol/news/uk/science/article4715761.ece
  5. Scalar production in Schwarzschild and Rindler metrics
  6. Detección experimental de la radiación Unruh
  7. «Agujero negro» |url= incorrecta con autorreferencia (ayuda). Wikipedia, la enciclopedia libre. 22 de octubre de 2019. Consultado el 11 de noviembre de 2019. 
  8. «Ultrarelativistic limit» |url= incorrecta con autorreferencia (ayuda). Wikipedia (en inglés). 30 de enero de 2019. Consultado el 11 de noviembre de 2019. 

Enlaces externos[editar]