Mínimos cuadrados no lineales

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Los Mínimos cuadrados no lineales es la forma de análisis de mínimos cuadrados que se usa para encajar un conjunto de m observaciones con un modelo que es no lineal en n parámetros desconocidos (m > n). Se utiliza en algunas formas de regresión no lineal. La base del método es para aproximar el modelo por uno lineal y para refinar los parámetros por iteraciones sucesivas. Hay muchas similitudes con mínimos cuadrados lineales , pero también algunas diferencias importantes.

Teoría[editar]

Considere un conjunto de observaciones, y una curva (función del modelo) que además de la variable también depende de parámetros, con Se desea encontrar el vector de parámetros tales que la curva se ajuste mejor a los datos dados en el sentido de mínimos cuadrados, es decir, la suma de cuadrados

esta es minimizada cuando los errores ri están dados por

para

El mínimo valor de S se produce cuando el gradiente es cero. Dado que el modelo contiene 'n parámetros hay n ecuaciones de gradiente:

En un sistema no lineal, los derivados son funciones tanto de la variable independiente y los parámetros, por lo que estas ecuaciones gradiente no tienen una solución cerrada. En lugar de ello, los valores iniciales deben ser elegidos para los parámetros. Entonces, los parámetros se refinan iterativamente, es decir, los valores se obtienen por aproximación sucesiva,

Aquí, k es un número de iteración y el vector de incrementos, que se conoce como el vector de desplazamiento. En cada iteración del modelo se linealiza por aproximación a un primer orden en serie de Taylor de expansión sobre

El jacobiano , J, es una función de las constantes, la variable independiente y los parámetros, por lo que cambia de una iteración a la siguiente. Por lo tanto, en términos del modelo linealizado, y los residuos se dan por

Sustituyendo estas expresiones en las ecuaciones de gradiente, se convierten

que, en el reordenamiento, convertido en n ecuaciones lineales simultáneas, las ecuaciones normales

Las ecuaciones normales se escriben en notación matricial como

Cuando las observaciones no son igualmente fiable, una suma ponderada de los cuadrados puede ser minimizado,

Referencias[editar]

  • C. T. Kelley, Iterative Methods for Optimization, SIAM Frontiers in Applied Mathematics, no 18, 1999, ISBN 0-89871-433-8. Online copy
  • T. Strutz: Data Fitting and Uncertainty (A practical introduction to weighted least squares and beyond). Vieweg+Teubner, ISBN 978-3-8348-1022-9.