Histona

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 11:32 21 mar 2017 por Figuerai (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Representación esquemática del ensamblaje de las histonas nucleares en el nucleosoma.
Estructura del nucleosoma.

Las histonas son proteínas básicas, de baja masa molecular, y están muy conservadas (en términos evolutivos) entre los eucariotas así como en algunos procariotas. Forman la cromatina, junto con el ADN, sobre la base, entre otras, de unas unidades conocidas como nucleosomas. La cromatina resuelve el problema del tamaño del ADN dentro del núcleo, compactándolo. La cromatina está formada por ADN y varios tipos de proteínas, algunos ya mencionados, las principales de las cuales son las histonas.

Historia

En 1884, Albrecht Kossel reportó el aislamiento de un componente extraído por tratamiento ácido de núcleos de eritrocitos de ganso. Por su aparente similitud fisicoquímica con la peptona lo denominó histonas y sugirió que podría estar unido a los ácidos nucleicos.[1]​ La palabra histona deriva de la palabra alemana “Histon”, de origen incierto pero probablemente del griego “histanai” o de “histos”.

Hasta principios de 1990, las histonas fueron consideradas, por la mayoría, como material de relleno inerte del ADN nuclear eucariota, opinión basada, en parte, por los modelos de Mark Ptashne y otros, que creían que la transcripción era activada por la interacción proteína-ADN y proteína-proteína a lo largo de un molde de ADN, como en el caso de las bacterias.

Durante la década de 1980, Yahli Lorch y Roger Kornberg[2]​ demostraron que un nucleosoma en un núcleo promotor impide la iniciación de la transcripción in vitro, y Michael Grunstein [3]​ demostró que las histonas pueden reprimir la transcripción in vivo, lo que conduce a la idea del nucleosoma como un represor del gen. 

Hasta la década de 1990 no se reconoció el papel regulador de las histonas, siendo vistas con anterioridad como mero sustrato para el plegamiento del ADN.

Vicente Allfrey y Alfred Mirsky, anteriormente, propusieron un papel de la modificación de las histonas en la activación transcripcional,[4]​considerado como una manifestación molecular de la epigenética. Michael Grunstein[5]​ y David Allis[6]​encontró apoyo en esta proposición gracias al conocimiento de la acetilación de histonas para la transcripción en la levadura y la actividad del activador transcripcional Gcn5 como una histona-acetiltransferasa.

El descubrimiento de la histona H5 parece remontarse a la década de 1970,[7]​y en la actualidad se considera una isoforma de la histona H1.[8][9][10]

Histonas – proteínas de soporte

Las proteínas celulares más frecuentes son las proteínas histonas, siendo que cada célula eucariótica presenta varios cientos de millones de moléculas de histonas, mientras que las demás proteínas no alcanzan unos cientos (como mucho, a miles). Son proteínas de masa molecular baja, aproximadamente 11-12 Kd y exhiben un alto contenido, cerca de 20%, de lisina y arginina (aminoácidos básicos). Con las cargas positivas de las cadenas laterales de estos restos, las histonas (que son extremadamente básicas) se unen a los grupos fosfato del ADN (cargados negativamente); para ello no es relevante la secuencia de bases dentro del ADN. A menudo, las histonas son modificadas por metilaciones, acetilaciones, fosforilaciones o ADP-ribosilaciones.

  • Metilaciones: Determinan cambios permanentes en la cromatina. Están destinadas al mantenimiento de un tipo determinado de expresión génica. Enzimas encargadas: HMTasas.
  • Acetilaciones: en las colas de las histonas a nivel de lisina y arginina: modifican la cromatina determinando que pueda transcribir. Enzimas encargadas: HAT.
  • Desacetilaciones: determinan la compactación de la cromatina, silencia la actividad transcripcional. Enzimas encargadas: HDAC.

En los seres humanos hay cinco tipos principales: la histona H1 y las histonas H2A, H2B, H3 y H4. Estas últimas se denominan también histonas nucleosomales y forman un octámero con dos histonas de cada; alrededor de este núcleo se enrolla dos veces un hilo de ADN. Este complejo ADN-histona recibe el nombre de nucleosoma y constituye el componente primario del cromosoma.[11]

El ADN gira unos 147 pares de bases alrededor del núcleo de la histona y a continuación se desplaza unos 20-70 bp en un giro hacia la izquierda hasta alcanzar el siguiente nucleosoma. La pieza intermedia, también denominada ADN de conexión está “desnuda”, es decir, no está equipada con histonas. La histonas H1 se coloca como pieza de cierre en cada nucleosoma y al mismo tiempo toma contacto con las agrupaciones vecinas. De esto modo, las proteínas H1 van “grapando” los nucleosomas para formar un hilo denso: la fibra de cromatina.

Histonas – proteínas de control transcripcional

Las características de las histonas han contribuido a que las histonas fueran visualizadas únicamente como proteínas que permitían al ADN enrollarse adquiriendo así un primer grado de compactación que le facilitaría ser almacenado en el núcleo. Sin embargo, pasó mucho tiempo hasta que se reparó en el hecho de que la naturaleza requería de un grupo de moléculas que participaran en la compactación del ADN: cualquier secuencia de aminoácidos con carga positiva podría llevar a cabo dicha función. Esto es, no había necesidad de conservar una secuencia precisa de aminoácidos a lo largo de millones de años.[12]

Hasta la segunda mitad de la década de 1980 estas observaciones no fueron reconsideradas más cuidadosamente, cuando los grupos de Roger Kornberg y Donald Brown observaron que cuando la secuencia de ADN conocida como caja TATA (la cual se localiza en la secuencia regulatoria denominada promotor) quedaba íntimamente asociada a las histonas en el nucleosoma, la transcripción resultaba reprimida. Por el contrario, cuando dicha secuencia se colocaba fuera del nucleosoma, la transcripción podía producirse libremente.[13]

Actualmente, se sabe que todo el ADN nuclear está enrollado en nucleosomas que se organizan en fibras de cromatina y que los reguladores de genes no pueden unirse a un ADN tan compacto, ya que sus lugares de unión están copados (tapados) por nucleosomas. Así, los factores de transcripción primero deben hacer la tarea de distender los nucleosomas para obtener un acceso físico.

Un conjunto de factores de transcripción puede modificar covalentemente los restos de histonas situados en el núcleo de los nucleosomas. Algunos tienen actividad histona-acetil-transferasa, con la que acetilan el grupo ε-amino de los restos de lisina. Así, estos pierden su carga positiva y ya no pueden mantener los enlaces iónicos, lo que hace que el núcleo de los nucleosomas se distienda.

De este modo, las secuencias reguladoras del ADN quedan accesibles. Las histonas también pueden modificarse por metilación, ribosilación o fosforilación; aún no se conoce en detalles cuáles son los mecanismos precisos con los que están modificaciones influyen en la regulación genética.

Super familia Familia Subfamilia Miembros
Ligador ("Linker")
H1
H1F H1F0, H1FNT, H1FOO, H1FX
H1H1 HIST1H1A, HIST1H1B, HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T
Médula ("Core")
H2A
H2AF H2AFB1, H2AFB2, H2AFB3, H2AFJ, H2AFV, H2AFX, H2AFY, H2AFY2, H2AFZ
H2A1 HIST1H2AA, HIST1H2AB, HIST1H2AC, HIST1H2AD, HIST1H2AE, HIST1H2AG, HIST1H2AI, HIST1H2AJ, HIST1H2AK, HIST1H2AL, HIST1H2AM
H2A2 HIST2H2AA3, HIST2H2AC
H2B
H2BF H2BFM, H2BFO, H2BFS, H2BFWT
H2B1 HIST1H2BA, HIST1H2BB, HIST1H2BC, HIST1H2BD, HIST1H2BE, HIST1H2BF, HIST1H2BG, HIST1H2BH, HIST1H2BI, HIST1H2BJ, HIST1H2BK, HIST1H2BL, HIST1H2BM, HIST1H2BN, HIST1H2BO
H2B2 HIST2H2BE
H3
H3A1 HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, HIST1H3H, HIST1H3I, HIST1H3J
H3A2 HIST2H3C
H3A3 HIST3H3
H4
H41 HIST1H4A, HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E, HIST1H4F, HIST1H4G, HIST1H4H, HIST1H4I, HIST1H4J, HIST1H4K, HIST1H4L
H44 HIST4H4

Referencias

  1. Wu RS, Panusz HT, Hatch CL y Bonner WM (1986) Histones and their modifications, Crit Rev Biochem 20: 201-263.
  2. Lorch Y, LaPointe JW, Kornberg RD (Apr 1987). «Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones». Cell 49 (2): 203-10. PMID 3568125. doi:10.1016/0092-8674(87)90561-7.  |coautores= requiere |autor= (ayuda)
  3. Kayne PS, Kim UJ, Han M, Mullen JR, Yoshizaki F, Grunstein M (Oct 1988). «Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast». Cell 55 (1): 27-39. PMID 3048701. doi:10.1016/0092-8674(88)90006-2.  |coautores= requiere |autor= (ayuda)
  4. Allfrey, Vincent (1966). «RNA synthesis and histone acetylation during the course of gene activation in lymphocytes». Proc Natl Acad Sci U S A. 
  5. Grunstein, Michael (1991). «Yeast histone H4 N-terminal sequence is required for promoter activation in vivo». Cell. 
  6. Allis, C David (1996). «Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation». Cell. 
  7. Aviles FJ, Chapman GE, Kneale GG, Crane-Robinson C, Bradbury EM (Aug 1978). «The conformation of histone H5. Isolation and characterisation of the globular segment». European Journal of Biochemistry / FEBS 88 (2): 363-71. PMID 689022. doi:10.1111/j.1432-1033.1978.tb12457.x.  |coautores= requiere |autor= (ayuda)
  8. Cox, Michael; Nelson, David R.; Lehninger, Albert L (2005). Lehninger Principles of Biochemistry. San Francisco: W.H. Freeman. ISBN 0-7167-4339-6. 
  9. Bhasin M, Reinherz EL, Reche PA (2006). «Recognition and classification of histones using support vector machine». Journal of Computational Biology 13 (1): 102-12. PMID 16472024. doi:10.1089/cmb.2006.13.102.  |coautores= requiere |autor= (ayuda)
  10. Hartl, Daniel L.; Freifelder, David; Snyder, Leon A. (1988). Basic Genetics. Boston: Jones and Bartlett Publishers. ISBN 0-86720-090-1. 
  11. Müller-Esterl, Werner (2004). Bioquímica – Fundamentos para Medicina y Ciencias de la Vida. Reverté. p. 213. 
  12. Raquel Ortega, Carlos Luna, José Luis Busto y Fernando Montiel. «Dualidad funcional de las histonas: proteínas de empacamiento genómico y de control transcripcional». 
  13. Felsenfeld, Gary (19 de enero de 1992). «Chromatin as an essential part of the transcriptional mechanim» [Cromatina, un importante papel del mecanismo de transcripción]. Nature (en inglés) 355: 219 - 224. doi:10.1038/355219a0. (requiere suscripción). 
  • Müller-Esterl, Werner (2004). Bioquímica – Fundamentos para Medicina y Ciencias de la Vida. Reverté. p. 279.