Diferencia entre revisiones de «Frente de ráfaga»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
AstaBOTh15 (discusión · contribs.)
m Bot: Enlace a artículo bueno para: en:Outflow boundary; cambios triviales
Muro Bot (discusión · contribs.)
m Bot: Añadiendo títulos a las referencias; cambios cosméticos
Línea 1: Línea 1:
<small>Información sobre el libro "Gust Front" de [[John Ringo]]</small>
<small>Información sobre el libro "Gust Front" de [[John Ringo]]</small>


[[Archivo:Outflow bndry.png|thumb|right|300px|Imágenes de un frente en un [[radar]] con las velocidades radiales y frontales dibujadas, en la 3ª abajo]]
[[Archivo:Outflow bndry.png|thumb|300px|Imágenes de un frente en un [[radar]] con las velocidades radiales y frontales dibujadas, en la 3ª abajo]]


Como '''límite frontal''', también conocido como '''frente de ráfagas''', es una zona de separación en [[microescala]] o en [[mesoescala]] de aire frío de [[tormenta]]s ([[:en:Outflow (meteorology)|fluyentes]]) de la [[atmósfera]] subyacente; es similar en efecto al [[frente frío]], con pasajes marcados por una inyección de [[viento]] y usualmente la caída en [[temperatura]] y una correlacionada caída de presión. Estas corrientes pueden persistir por 24 [[hora|h]] o más después de las tormentas que generaron y se disiparon, y pueden desplazarse cientos de [[km]] desde su área de origen. Nuevas tormentas frecuentemente se desarrollan a lo largo de estas corrientes, especialmente cerca del punto de intersección con otro [[frente frío]], [[frente de punto de rocío]], otros flujos, etc.) Estos frentes pueden verse como finas líneas en el [[radar meteo]], o arcos de nubes bajas en imágenes de [[satélite meteorológico]]. Desde la tierra, estos frentes pueden ser co-localizados con la apariencia de [[nube en arco]] o de [[nube almeja]].
Como '''límite frontal''', también conocido como '''frente de ráfagas''', es una zona de separación en [[microescala]] o en [[mesoescala]] de aire frío de [[tormenta]]s ([[:en:Outflow (meteorology)|fluyentes]]) de la [[atmósfera]] subyacente; es similar en efecto al [[frente frío]], con pasajes marcados por una inyección de [[viento]] y usualmente la caída en [[temperatura]] y una correlacionada caída de presión. Estas corrientes pueden persistir por 24 [[hora|h]] o más después de las tormentas que generaron y se disiparon, y pueden desplazarse cientos de [[km]] desde su área de origen. Nuevas tormentas frecuentemente se desarrollan a lo largo de estas corrientes, especialmente cerca del punto de intersección con otro [[frente frío]], [[frente de punto de rocío]], otros flujos, etc.) Estos frentes pueden verse como finas líneas en el [[radar meteo]], o arcos de nubes bajas en imágenes de [[satélite meteorológico]]. Desde la tierra, estos frentes pueden ser co-localizados con la apariencia de [[nube en arco]] o de [[nube almeja]].
Línea 8: Línea 8:


== Definición ==
== Definición ==
[[Archivo:Thunderstorm with lead gust front - NOAA.jpg|thumb|right|250 px|Tormenta con pesado frente, Brookhaven, New Mexico]]
[[Archivo:Thunderstorm with lead gust front - NOAA.jpg|thumb|250 px|Tormenta con pesado frente, Brookhaven, New Mexico]]
Un flujo del tipo frente de ráfaga, o nube de arco, es el principio de los vientos en ráfagas, más fríos, de tormentas con [[ascendente (meteoro)|ascendentes]]; a veces asociados con una [[nube en arco]]. Un súbito salto en la presión es asociado con su pasaje.<ref>{{cita web|editorial=[[American Meteorological Society]]|autor=Glossary of Meteorology|fecha=2009|fechaacceso=3 de julio 2009|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=gust+front&submit=Search|título=Gust Front}}</ref> Y pueden persistir por más de 24 [[hora|h]] y atravesar centenares de miles de [[km]] desde su área de origen.<ref>{{cita web|autor=[[National Weather Service]]|fecha=1 de noviembre 2004|url=http://www.weather.gov/glossary/index.php?word=OUTFLOW%20Boundary|título=Outflow Boundary|fechaacceso=9 de julio 2008}}</ref> <!--A wrapping gust front is a front that wraps around the [[mesocyclone]], cutting off the inflow of warm moist air and resulting in occlusion. This is sometimes the case during the event of a collapsing storm, in which the wind literally "rips it apart".<ref>{{cite web|author=[[National Weather Service]]|url=http://www.weather.gov/glossary/index.php?word=Wrapping+gust+front|title=Wrapping Gust Front|accessdate=3 de julio 2009|date=1 de noviembre 2004}}</ref>
Un flujo del tipo frente de ráfaga, o nube de arco, es el principio de los vientos en ráfagas, más fríos, de tormentas con [[ascendente (meteoro)|ascendentes]]; a veces asociados con una [[nube en arco]]. Un súbito salto en la presión es asociado con su pasaje.<ref>{{cita web|editorial=[[American Meteorological Society]]|autor=Glossary of Meteorology|fecha=2009|fechaacceso=3 de julio 2009|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=gust+front&submit=Search|título=Gust Front}}</ref> Y pueden persistir por más de 24 [[hora|h]] y atravesar centenares de miles de [[km]] desde su área de origen.<ref>{{cita web|autor=[[National Weather Service]]|fecha=1 de noviembre 2004|url=http://www.weather.gov/glossary/index.php?word=OUTFLOW%20Boundary|título=Outflow Boundary|fechaacceso=9 de julio 2008}}</ref> <!--A wrapping gust front is a front that wraps around the [[mesocyclone]], cutting off the inflow of warm moist air and resulting in occlusion. This is sometimes the case during the event of a collapsing storm, in which the wind literally "rips it apart".<ref>{{cite web|author=[[National Weather Service]]|url=http://www.weather.gov/glossary/index.php?word=Wrapping+gust+front|title=Wrapping Gust Front|accessdate=3 de julio 2009|date=1 de noviembre 2004}}</ref>
-->
-->
== Origen ==
== Origen ==
[[Archivo:Microburstnasa.JPG|250px|thumb|right|Ilustración de un microfrente. El régimen ventoso en el microfrente es opuesto al de un tornado]]<!--
[[Archivo:Microburstnasa.JPG|250px|thumb|Ilustración de un microfrente. El régimen ventoso en el microfrente es opuesto al de un tornado]]<!--
{{See also|Downburst|Squall line}}
{{See also|Downburst|Squall line}}
A [[microburst]] is a very localized column of sinking air known as a downburst, producing damaging divergent and [[straight-line winds]] at the surface that are similar to but distinguishable from [[tornado]]es which generally have convergent damage.<ref>{{cite web|author=Dr. Nolan Atkins|date=2009|publisher=[[Lyndon State College]] Meteorology|url=http://apollo.lsc.vsc.edu/classes/met130/notes/chapter14/tornado_mb_damage.html|title=How to distinguish between tornado and microburst (straight-line) wind damage|accessdate=2008-07-09}}</ref> The term was defined as affecting an area {{convert|4|km|mi}} in diameter or less,<ref>{{cite web|author=[[National Weather Association]]|date=23 de noviembre 2003|url=http://www.nwas.org/committees/avnwxcourse/lesson5.htm|title=Welcome to Lesson 5|accessdate=2008-07-09}}</ref> distinguishing them as a type of downburst and apart from common wind shear which can encompass greater areas. They are normally associated with individual thunderstorms. Microburst soundings show the presence of mid-level dry air, which enhances evaporative cooling.<ref name="micro">{{cite web|author=Fernando Caracena, Ronald L. Holle, and Charles A. Doswell III|date=26 de junio 2002|publisher=Cooperative Institute for Mesoscale Meteorological Studies|url=http://www.cimms.ou.edu/~doswell/microbursts/Handbook.html|title=Microbursts: A Handbook for Visual Identification|accessdate=9 de julio 2008}}</ref>
A [[microburst]] is a very localized column of sinking air known as a downburst, producing damaging divergent and [[straight-line winds]] at the surface that are similar to but distinguishable from [[tornado]]es which generally have convergent damage.<ref>{{cite web|author=Dr. Nolan Atkins|date=2009|publisher=[[Lyndon State College]] Meteorology|url=http://apollo.lsc.vsc.edu/classes/met130/notes/chapter14/tornado_mb_damage.html|title=How to distinguish between tornado and microburst (straight-line) wind damage|accessdate=2008-07-09}}</ref> The term was defined as affecting an area {{convert|4|km|mi}} in diameter or less,<ref>{{cite web|author=[[National Weather Association]]|date=23 de noviembre 2003|url=http://www.nwas.org/committees/avnwxcourse/lesson5.htm|title=Welcome to Lesson 5|accessdate=2008-07-09}}</ref> distinguishing them as a type of downburst and apart from common wind shear which can encompass greater areas. They are normally associated with individual thunderstorms. Microburst soundings show the presence of mid-level dry air, which enhances evaporative cooling.<ref name="micro">{{cite web|author=Fernando Caracena, Ronald L. Holle, and Charles A. Doswell III|date=26 de junio 2002|publisher=Cooperative Institute for Mesoscale Meteorological Studies|url=http://www.cimms.ou.edu/~doswell/microbursts/Handbook.html|title=Microbursts: A Handbook for Visual Identification|accessdate=9 de julio 2008}}</ref>
Línea 18: Línea 18:
Organized areas of thunderstorm activity reinforce pre-existing frontal zones, and can outrun cold fronts. This outrunning occurs within the [[westerlies]] in a pattern where the upper level jet splits into two streams. The resultant [[Mesoscale Convective System|mesoscale convective system]] (MCS) forms at the point of the upper level split in the wind pattern in the area of best low level inflow. The convection then moves east and toward the [[equator]] into the warm sector, parallel to low-level thickness lines. When the convection is strong and linear or curved, the MCS is called a [[squall line]], with the feature placed at the leading edge of the significant wind shift and pressure rise which is normally just ahead of its radar signature.<ref>{{cite web|author=Office of the Federal Coordinator for Meteorology|date=2008|url=http://www.ofcm.gov/slso/pdf/slsochp2.pdf|title=Chapter 2: Definitions|page=2-1|publisher=[[NOAA]]|accessdate=2009-05-03}}</ref> This feature is commonly depicted in the warm season across the [[United States]] on surface analyses, as they lie within sharp surface troughs.
Organized areas of thunderstorm activity reinforce pre-existing frontal zones, and can outrun cold fronts. This outrunning occurs within the [[westerlies]] in a pattern where the upper level jet splits into two streams. The resultant [[Mesoscale Convective System|mesoscale convective system]] (MCS) forms at the point of the upper level split in the wind pattern in the area of best low level inflow. The convection then moves east and toward the [[equator]] into the warm sector, parallel to low-level thickness lines. When the convection is strong and linear or curved, the MCS is called a [[squall line]], with the feature placed at the leading edge of the significant wind shift and pressure rise which is normally just ahead of its radar signature.<ref>{{cite web|author=Office of the Federal Coordinator for Meteorology|date=2008|url=http://www.ofcm.gov/slso/pdf/slsochp2.pdf|title=Chapter 2: Definitions|page=2-1|publisher=[[NOAA]]|accessdate=2009-05-03}}</ref> This feature is commonly depicted in the warm season across the [[United States]] on surface analyses, as they lie within sharp surface troughs.


A macroburst, normally associated with squall lines, is a strong downburst larger than {{convert|4|km|mi}}.<ref>{{cite web|author=Dr. Ali Tokay|url=http://userpages.umbc.edu/~tokay/chapter13.html|title=Chapter #13: Thunderstorms|accessdate=2008-07-09|date=2000-04-21|publisher=[[University of Maryland]] Baltimore College}}</ref> A wet microburst consists of precipitation and an atmosphere saturated in the low-levels. A dry microburst emminates from high-based thunderstorms with [[virga]] falling from their base.<ref name="micro">Fernando Caracena, Ronald L. Holle, and Charles A. Doswell III. [http://www.cimms.ou.edu/~doswell/microbursts/Handbook.html Microbursts: A Handbook for Visual Identification.] Retrieved on 2008-07-09.</ref> All types are formed by precipitation-cooled air rushing to the surface. Downbursts can occur over large areas. In the extreme case, a [[derecho]] can cover a huge area more than {{convert|200|mi|km|abbr=off}} wide and over {{convert|1000|mi|km|abbr=off}} long, lasting up to 12 hours or more, and is associated with some of the most intense straight-line winds,<ref>{{cite web|author=Peter S. Parke and Norvan J. Larson|date=2005-11-23|url=http://www.crh.noaa.gov/dlh/science/event_archive/summer_archive/1999blowdown/1999blowdown.php|title=Boundary Waters Windstorm|accessdate=2008-07-30|publisher=[[National Weather Service]] Forecast Office, [[Duluth, Minnesota]]}}</ref> but the generative process is somewhat different from that of most downbursts.
A macroburst, normally associated with squall lines, is a strong downburst larger than {{convert|4|km|mi}}.<ref>{{cite web|author=Dr. Ali Tokay|url=http://userpages.umbc.edu/~tokay/chapter13.html|title=Chapter #13: Thunderstorms|accessdate=2008-07-09|date=2000-04-21|publisher=[[University of Maryland]] Baltimore College}}</ref> A wet microburst consists of precipitation and an atmosphere saturated in the low-levels. A dry microburst emminates from high-based thunderstorms with [[virga]] falling from their base.<ref name=autogenerated1>Fernando Caracena, Ronald L. Holle, and Charles A. Doswell III. [http://www.cimms.ou.edu/~doswell/microbursts/Handbook.html Microbursts: A Handbook for Visual Identification.] Retrieved on 2008-07-09.</ref> All types are formed by precipitation-cooled air rushing to the surface. Downbursts can occur over large areas. In the extreme case, a [[derecho]] can cover a huge area more than {{convert|200|mi|km|abbr=off}} wide and over {{convert|1000|mi|km|abbr=off}} long, lasting up to 12 hours or more, and is associated with some of the most intense straight-line winds,<ref>{{cite web|author=Peter S. Parke and Norvan J. Larson|date=2005-11-23|url=http://www.crh.noaa.gov/dlh/science/event_archive/summer_archive/1999blowdown/1999blowdown.php|title=Boundary Waters Windstorm|accessdate=2008-07-30|publisher=[[National Weather Service]] Forecast Office, [[Duluth, Minnesota]]}}</ref> but the generative process is somewhat different from that of most downbursts.


{{clear}}
{{clear}}
-->
-->
== Apariencia ==
== Apariencia ==
[[Archivo:DangerousShelfCloud.jpg|thumb|right|250 px|Nube de frente, [[Minnesota]]]]<!--
[[Archivo:DangerousShelfCloud.jpg|thumb|250 px|Nube de frente, [[Minnesota]]]]<!--
At ground level, [[shelf cloud]]s and [[roll cloud]]s can be seen at the leading edge of outflow boundaries.<ref>{{cite web|url=http://www.met.utah.edu/class/jhorel/5140/radar_handbook.pdf|title=Federal Meteorological Handbook No. 11 Doppler RADAR Meteorological Observations Part B Doppler RADAR Theory and Meteorology|author=Office of the Federal Coordinator For
At ground level, [[shelf cloud]]s and [[roll cloud]]s can be seen at the leading edge of outflow boundaries.<ref>{{cite web|url=http://www.met.utah.edu/class/jhorel/5140/radar_handbook.pdf|title=Federal Meteorological Handbook No. 11 Doppler RADAR Meteorological Observations Part B Doppler RADAR Theory and Meteorology|author=Office of the Federal Coordinator For
Meteorological Services and Supporting Research|publisher=[[Department of Commerce]]|date=December 2005|accessdate=2009-09-01}}</ref> Through [[weather satellite|satellite]] imagery, an arc cloud is visible as an arc of low clouds spreading out from a thunderstorm. If the skies are cloudy behind the arc, or if the arc is moving quickly indicate that high wind gusts are likely behind the gust front.<ref>{{cite book|url=http://books.google.com/books?id=o2wfF7xNqGYC&pg=PA322&lpg=PA322&dq=satellite+arc+cloud+outflow+boundary+book&source=bl&ots=nIBpVqGJw5&sig=n7cafZP3T7-tKw3PcR43TDH3keU&hl=en&ei=d7OdSoH-G86w8QanycG4Aw&sa=X&oi=book_result&ct=result&resnum=2#v=onepage&q=&f=false|author=Pravas Mahapatra, R. J. Doviak, Vladislav Mazur, Dušan S. Zrnić|title=Aviation weather surveillance systems: advanced radar and surface sensors for flight safety and air traffic management, Volume 183|page=322|year=1999|publisher=Institution of Electrical Engineers|ISBN=9780852969373|accessdate=2009-09-01}}</ref> Sometimes a gust front can be seen on [[weather radar]], showing as a thin arc or line of weak radar echos pushing out from a collapsing storm. The thin line of weak radar echoes is known as a fine line.<ref>{{cite web|author=Glossary of Meteorology|date=2009|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=fine+line&submit=Search|title=Fine Line|publisher=[[American Meteorological Society]]|accessdate=2009-07-03}}</ref> Occasionally, winds caused by the gust front are so high in velocity, that they may also show up on radar. This cool outdraft can then energize other storms which it hits by assisting in [[updraft]]s. Gust fronts colliding from two storms can even create new storms. However, there is usually no rain accompanying the shifting winds. An expansion of the rain shaft near ground level, in the general shape of a foot, is a telltale sign of a downburst. Gustnadoes, short-lived vertical circulations near ground level, can be spawned by outflow boundaries.<ref name="micro"/>
Meteorological Services and Supporting Research|publisher=[[Department of Commerce]]|date=December 2005|accessdate=2009-09-01}}</ref> Through [[weather satellite|satellite]] imagery, an arc cloud is visible as an arc of low clouds spreading out from a thunderstorm. If the skies are cloudy behind the arc, or if the arc is moving quickly indicate that high wind gusts are likely behind the gust front.<ref>{{cite book|url=http://books.google.com/books?id=o2wfF7xNqGYC&pg=PA322&lpg=PA322&dq=satellite+arc+cloud+outflow+boundary+book&source=bl&ots=nIBpVqGJw5&sig=n7cafZP3T7-tKw3PcR43TDH3keU&hl=en&ei=d7OdSoH-G86w8QanycG4Aw&sa=X&oi=book_result&ct=result&resnum=2#v=onepage&q=&f=false|author=Pravas Mahapatra, R. J. Doviak, Vladislav Mazur, Dušan S. Zrnić|title=Aviation weather surveillance systems: advanced radar and surface sensors for flight safety and air traffic management, Volume 183|page=322|year=1999|publisher=Institution of Electrical Engineers|ISBN=9780852969373|accessdate=2009-09-01}}</ref> Sometimes a gust front can be seen on [[weather radar]], showing as a thin arc or line of weak radar echos pushing out from a collapsing storm. The thin line of weak radar echoes is known as a fine line.<ref>{{cite web|author=Glossary of Meteorology|date=2009|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=fine+line&submit=Search|title=Fine Line|publisher=[[American Meteorological Society]]|accessdate=2009-07-03}}</ref> Occasionally, winds caused by the gust front are so high in velocity, that they may also show up on radar. This cool outdraft can then energize other storms which it hits by assisting in [[updraft]]s. Gust fronts colliding from two storms can even create new storms. However, there is usually no rain accompanying the shifting winds. An expansion of the rain shaft near ground level, in the general shape of a foot, is a telltale sign of a downburst. Gustnadoes, short-lived vertical circulations near ground level, can be spawned by outflow boundaries.<ref name="micro" />


==Effects==
==Effects==
[[Image:Undular bore waves over Arabian Sea.jpg|250px|right|thumb|Satellite image of an undular bore]]
[[Image:Undular bore waves over Arabian Sea.jpg|250px|thumb|Satellite image of an undular bore]]
{{See also|Wind shear|Undular bore}}
{{See also|Wind shear|Undular bore}}
Gust fronts create low-level [[wind shear]] which can be hazardous to planes when they takeoff or land.<ref>{{cite journal|author=Diana L. Klingle, David R. Smith, and Marilyn M. Wolfson|url=http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F1520-0493(1987)115%3C0905%3AGFCADB%3E2.0.CO%3B2|title=Gust Front Characteristics as Detected by Doppler Radar|accessdate=2008-07-09|journal=Monthly Weather Review|pages=905-918|volume=115|number=5|date=May 1987}}</ref> Flying [[insect]]s, a subset of [[arthropods]], are swept along by the [[prevailing winds]].<ref>{{cite web|author=Diana Yates|date=2008|url=http://news.illinois.edu/news/08/0707birds.html|title=Birds migrate together at night in dispersed flocks, new study indicates|publisher=[[University of Illinois]] at Urbana - Champaign|accessdate=2009-04-26}}</ref> As such, fine line patterns within [[weather radar]] imagery, associated with converging winds, are dominated by insect returns.<ref>{{cite web|author=Bart Geerts and Dave Leon|date=2003|url=http://www-das.uwyo.edu/wcr/projects/ihop02/coldfront_preprint.pdf|title=P5A.6 Fine-Scale Vertical Structure of a Cold Front As Revealed By Airborne 95 GHZ Radar|publisher=[[University of Wyoming]]|accessdate=2009-04-26}}</ref> At the surface, clouds of dust can be raised by outflow boundaries. If squall lines form over arid regions, a duststorm known as a [[haboob]] may result from the high winds in their wake picking up dust from the desert floor.<ref>{{cite web|author=Western Region Climate Center|date=2002|url=http://www.wrcc.dri.edu/ams/glossary.html#H|title=H|publisher=Desert Research Institute|accessdate=2006-10-22}}</ref> If outflow boundaries move into areas of the atmosphere which are stable in the low levels, such as over colder pockets of ocean or through the cold sector of [[extratropical cyclone]]s, they can create a phenomenon known as an undular bore, which shows up on satellite and radar imagery as a series of [[transverse wave]]s in the cloud field oriented perpendicular to the low-level winds.<ref>{{cite web|url=http://www.arpal.org/Pubbl/paper/eumetsat-mauritania.pdf|title=Outflow from convective storm, Mauritania and adjacent Atlantic Ocean (13 August 2006)|author=Martin Setvak, Jochen Kerkmann, Alexander Jacob, HansPeter Roesli, Stefano Gallino, and Daniel Lindsey|accessdate=2009-07-03|date=2007-03-19|publisher=Agenzia Regionale per la Protezione dell'Ambiente Ligure}}</ref>
Gust fronts create low-level [[wind shear]] which can be hazardous to planes when they takeoff or land.<ref>{{cite journal|author=Diana L. Klingle, David R. Smith, and Marilyn M. Wolfson|url=http://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F1520-0493(1987)115%3C0905%3AGFCADB%3E2.0.CO%3B2|title=Gust Front Characteristics as Detected by Doppler Radar|accessdate=2008-07-09|journal=Monthly Weather Review|pages=905-918|volume=115|number=5|date=May 1987}}</ref> Flying [[insect]]s, a subset of [[arthropods]], are swept along by the [[prevailing winds]].<ref>{{cite web|author=Diana Yates|date=2008|url=http://news.illinois.edu/news/08/0707birds.html|title=Birds migrate together at night in dispersed flocks, new study indicates|publisher=[[University of Illinois]] at Urbana - Champaign|accessdate=2009-04-26}}</ref> As such, fine line patterns within [[weather radar]] imagery, associated with converging winds, are dominated by insect returns.<ref>{{cite web|author=Bart Geerts and Dave Leon|date=2003|url=http://www-das.uwyo.edu/wcr/projects/ihop02/coldfront_preprint.pdf|title=P5A.6 Fine-Scale Vertical Structure of a Cold Front As Revealed By Airborne 95 GHZ Radar|publisher=[[University of Wyoming]]|accessdate=2009-04-26}}</ref> At the surface, clouds of dust can be raised by outflow boundaries. If squall lines form over arid regions, a duststorm known as a [[haboob]] may result from the high winds in their wake picking up dust from the desert floor.<ref>{{cite web|author=Western Region Climate Center|date=2002|url=http://www.wrcc.dri.edu/ams/glossary.html#H|title=H|publisher=Desert Research Institute|accessdate=2006-10-22}}</ref> If outflow boundaries move into areas of the atmosphere which are stable in the low levels, such as over colder pockets of ocean or through the cold sector of [[extratropical cyclone]]s, they can create a phenomenon known as an undular bore, which shows up on satellite and radar imagery as a series of [[transverse wave]]s in the cloud field oriented perpendicular to the low-level winds.<ref>{{cite web|url=http://www.arpal.org/Pubbl/paper/eumetsat-mauritania.pdf|title=Outflow from convective storm, Mauritania and adjacent Atlantic Ocean (13 August 2006)|author=Martin Setvak, Jochen Kerkmann, Alexander Jacob, HansPeter Roesli, Stefano Gallino, and Daniel Lindsey|accessdate=2009-07-03|date=2007-03-19|publisher=Agenzia Regionale per la Protezione dell'Ambiente Ligure}}</ref>

Revisión del 14:38 29 nov 2009

Información sobre el libro "Gust Front" de John Ringo

Imágenes de un frente en un radar con las velocidades radiales y frontales dibujadas, en la 3ª abajo

Como límite frontal, también conocido como frente de ráfagas, es una zona de separación en microescala o en mesoescala de aire frío de tormentas (fluyentes) de la atmósfera subyacente; es similar en efecto al frente frío, con pasajes marcados por una inyección de viento y usualmente la caída en temperatura y una correlacionada caída de presión. Estas corrientes pueden persistir por 24 h o más después de las tormentas que generaron y se disiparon, y pueden desplazarse cientos de km desde su área de origen. Nuevas tormentas frecuentemente se desarrollan a lo largo de estas corrientes, especialmente cerca del punto de intersección con otro frente frío, frente de punto de rocío, otros flujos, etc.) Estos frentes pueden verse como finas líneas en el radar meteo, o arcos de nubes bajas en imágenes de satélite meteorológico. Desde la tierra, estos frentes pueden ser co-localizados con la apariencia de nube en arco o de nube almeja.

Los movimientos de flujo atmosférico crean cizalladura de viento de bajo nivel, pudiendo ser peligrosas durante los pasajes de aeronaves en ascenso o para aterrizar. Versiones potentes de esos desarrollos coocidos como "corrientes descendentes" pueden ser generadas en medios con cizalladuras verticales y a niveles medios de aire seco. Los microfrentes suelen tener un diámetro de influencia menor a 4 km; mientras los macrofrentes ocurren sobre un diámetro mayor a 4 km . Los microfrentes húmedos ocurren en atmósferas donde los bajos niveles están saturados, mientras los microfrentes secos ocurren en atmósferas más secas, tormentas de base alta. Cuando un frente se mueve hacia un más estable ambiente de bajo nivel, tales los dentro de una región de aire más frío o sobre regiones de Tº más frías del agua marítima, puede comenzar a desarrollarse una nube ondular.

Definición

Tormenta con pesado frente, Brookhaven, New Mexico

Un flujo del tipo frente de ráfaga, o nube de arco, es el principio de los vientos en ráfagas, más fríos, de tormentas con ascendentes; a veces asociados con una nube en arco. Un súbito salto en la presión es asociado con su pasaje.[1]​ Y pueden persistir por más de 24 h y atravesar centenares de miles de km desde su área de origen.[2]

Origen

Ilustración de un microfrente. El régimen ventoso en el microfrente es opuesto al de un tornado

Apariencia

Nube de frente, Minnesota

Enlaces internos

Referencias

  1. Glossary of Meteorology (2009). «Gust Front». American Meteorological Society. Consultado el 3 de julio de 2009. 
  2. National Weather Service (1 de noviembre de 2004). «Outflow Boundary». Consultado el 9 de julio de 2008. 

Enlaces externos