Diferencia entre revisiones de «Cuadrado perfecto»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 190.158.82.134 (disc.) a la última edición de 158.49.34.205
Línea 123: Línea 123:
2×5<sup>2</sup>&nbsp;−&nbsp;4<sup>2</sup>&nbsp;+&nbsp;2 = 2×25&nbsp;−&nbsp;16&nbsp;+&nbsp;2 =
2×5<sup>2</sup>&nbsp;−&nbsp;4<sup>2</sup>&nbsp;+&nbsp;2 = 2×25&nbsp;−&nbsp;16&nbsp;+&nbsp;2 =
50&nbsp;−&nbsp;16&nbsp;+&nbsp;2 = 36 = 6<sup>2</sup>.
50&nbsp;−&nbsp;16&nbsp;+&nbsp;2 = 36 = 6<sup>2</sup>.

Es a menudo útil notar que el cuadrado de cualquier número puede ser representado como la suma 1 + 1 + 2 + 2 +... + ''n''&nbsp;−&nbsp;1 + ''n''&nbsp;−&nbsp;1 + ''n''. Por ejemplo, el cuadrado de 4 o 4<sup>2</sup> es igual a 1 + 1 + 2 + 2 + 3 + 3 + 4 = 16. Este es el resultado de añadir una columna y columna de grosor uno al grafo cuadrado de lado tres (como en un tablero de [[tres en raya]]). Se puede añadir también tres lados y cuatro a la parte superior para obtener un cuadrado. Esto puede ser también útil para encontrar el cuadrado de un número grande de forma inmediata. Por ejemplo, el cuadrado de 52 = 50<sup>2</sup> + 50 + 51 + 51 + 52 = 2500 + 204 = 2704.

Un número cuadrado puede ser considerado también como la suma de dos [[número triangular|números triangulares]] consecutivos . La suma de dos números cuadrados consecutivos es un [[número cuadrado centrado]]. Cada cuadrado impar es además un [[número octogonal centrado]].


== Números cuadrados impares y pares ==
== Números cuadrados impares y pares ==

Revisión del 19:42 7 mar 2010

Un número cuadrado perfecto en matemáticas, o un número cuadrado, es un número cuya raíz cuadrada es un número entero.

Por ejemplo, 9 es un número cuadrado perfecto ya que puede ser escrito como 3 × 3.

32 = 9

Un número entero positivo que no tiene divisores cuadrados (excepto el 1) se denomina número libre de cuadrados.

Propiedades

El número m es un cuadrado perfecto si se pueden «ordenar» sus puntos en una figura cuadrada:

La fórmula más general para el n-ésimo número cuadrado es n2. Este resultado es también igual a la suma de los primeros n números impares, tal y como puede verse en

como puede ser visto en las ilustraciones superiores, donde un cuadrado resulta de los anteriores mediante la adicción de un número impar de puntos (marcado con una '+'). De esta forma, por ejemplo se tiene que: 52 = 25 = 1 + 3 + 5 + 7 + 9.

El teorema de cuatro cuadrados de Lagrange establece que cualquier número entero positivo puede ser escrito como la suma de cuatro perfectos cuadrados. Tres cuadrados no son suficientes para ser representados como números de la forma 4k(8m + 7). Un número positivo puede ser representado como una suma de dos cuadrados precisamente si la factorización en números primos no contiene potencias impares de la forma 4k + 3. Esta es una generalización del problema de Waring.

Un número cuadrado puede ser terminado en los dígitos 00,1,4,6,9, o 25 en base 10, como sigue:

  1. Si el último dígito de un número es 0, su cuadrado acaba en 00 y los precedente dígitos deben ser también un cuadrado.
  2. Si el último dígito de un número es 1 o 9, su cuadrado acaba en 1 y el número formado por su precedente debe ser divisible por cuatro.
  3. Si el último dígito de un número es 2 u 8, su cuadrado acaba en 4 y el precedente dígito debe ser un número par.
  4. Si el último dígito de un número es 3 o 7, su cuadrado acaba en el dígito 9 y el número formado por su precedentes dígitos debe ser divisible entre cuatro.
  5. Si el último dígito de un número es 4 o 6, su cuadrado acaba en 6 y el precedente dígito debe ser impar.
  6. Si el último dígito de un número es 5, su cuadrado acaba en 25 y los precedentes dígitos deben ser 0, 2, 06, o 56.

Ejemplos

12 = 1
22 = 4
32 = 9
42 = 16
52 = 25

Los primeros 50 cuadrados perfectos son:

02 = 0 ((sucesión A000290 en OEIS))
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100
112 = 121
122 = 144
132 = 169
142 = 196
152 = 225
162 = 256
172 = 289
182 = 324
192 = 361
202 = 400
212 = 441
222 = 484
232 = 529
242 = 576
252 = 625
262 = 676
272 = 729
282 = 784
292 = 841
302 = 900
312 = 961
322 = 1024
332 = 1089
342 = 1156
352 = 1225
362 = 1296
372 = 1369
382 = 1444
392 = 1521
402 = 1600
412 = 1681
422 = 1764
432 = 1849
442 = 1936
452 = 2025
462 = 2116
472 = 2209
482 = 2304
492 = 2401
502 = 2500
512 = 2601


Cuadrados como sumas

El n-ésimo número cuadrado puede ser calculado del resultado obtenido en las dos anteriores posiciones y al que se le añade el (n − 1)-ésimo cuadrado de sí mismo, sustrayendo el (n − 2)-enésimo cuadrado, y añadiendo 2 (). Por ejemplo, 2×52 − 42 + 2 = 2×25 − 16 + 2 = 50 − 16 + 2 = 36 = 62.

Es a menudo útil notar que el cuadrado de cualquier número puede ser representado como la suma 1 + 1 + 2 + 2 +... + n − 1 + n − 1 + n. Por ejemplo, el cuadrado de 4 o 42 es igual a 1 + 1 + 2 + 2 + 3 + 3 + 4 = 16. Este es el resultado de añadir una columna y columna de grosor uno al grafo cuadrado de lado tres (como en un tablero de tres en raya). Se puede añadir también tres lados y cuatro a la parte superior para obtener un cuadrado. Esto puede ser también útil para encontrar el cuadrado de un número grande de forma inmediata. Por ejemplo, el cuadrado de 52 = 502 + 50 + 51 + 51 + 52 = 2500 + 204 = 2704.

Un número cuadrado puede ser considerado también como la suma de dos números triangulares consecutivos . La suma de dos números cuadrados consecutivos es un número cuadrado centrado. Cada cuadrado impar es además un número octogonal centrado.

Números cuadrados impares y pares

Los cuadrados de números pares, desde (2n)2 = 4n2.

Los cuadrados de números impares desde (2n + 1)2 = 4(n2 + n) + 1.

De esto se sigue que las raíces cuadradas de los cuadrados de los números pares son pares, y las raíces cuadradas de los números impares son igualmente impares. Este hecho se emplea mucho en las demostraciones (Véase raíz cuadrada de 2).

Teorema de Chen

Chen Jingrun demostró en 1975 que siempre existe un número p, que es o bien primo o bien producto de dos primos, entre n2 y (n + 1)2.

Véase también

Referencias

Bibliografía

  • Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 30-32, 1996. ISBN 0-387-97993-X

Enlaces externos