Generación distribuida

De Wikipedia, la enciclopedia libre
(Redirigido desde «Energia distribuida»)
Saltar a: navegación, búsqueda
Generador eólico local en San Sebastián, España. 2010

La generación distribuida, también conocida como generación in-situ, generación embebida, generación descentralizada, generación dispersa o energía distribuida, consiste básicamente en la generación de energía eléctrica por medio de muchas pequeñas fuentes de energía en lugares lo más próximos posibles a las cargas.

La definición más global de la generación distribuida vendría a decir que es aquella que se conecta a la red de distribución de energía eléctrica y que se caracteriza por encontrarse instalada en puntos cercanos al consumo. Sus características generales son:

  • Reducen pérdidas en la red, al reducir los flujos de energía por la misma.
  • Su energía vertida no revierte flujos hacia la red de transporte.
  • Suelen tener potencias inferiores a 3 kW aunque en general se suele decir que no sobrepasan 10 kW de potencia instalada.

Evolución histórica[editar]

Actualmente, los países industrializados generan la mayoría de su electricidad en grandes instalaciones centralizadas, tales como centrales de combustible fósil (carbón, gas natural) nucleares o hidroeléctricas. Estas centrales son excelentes a escala de rendimientos económicos, pero transmiten la electricidad normalmente a muy grandes distancias y el rendimiento energético y medioambiental es bajo.

Las centrales eléctricas se ubican en lugares determinados en función de ciertos factores económicos, de seguridad, logísticos o medioambientales, entre otros, que provocan que la mayoría de las veces la energía se genere muy lejos de donde se consume. Por ejemplo las centrales térmicas se construyen lejos de las ciudades por motivos de contaminación atmosférica e incluso lo más cerca posible de las zonas de obtención de los combustibles fósiles. Otro ejemplo son las centrales hidroeléctricas que han de colocarse en los curso de agua.

La generación distribuida da otro enfoque. Reduce la cantidad de energía que se pierde en la red de transporte de energía eléctrica ya que la electricidad se genera muy cerca de donde se consume, a veces incluso en el mismo edificio. Esto hace que también se reduzcan el tamaño y número de las líneas eléctricas que deben construirse y mantenerse en optimas condiciones.

Las fuentes de energía con un plan de tarifa regulada (FIT) tienen bajo mantenimiento, baja contaminación y alta eficiencia. En el pasado, estos características requerían de ingenieros de operación y complejas plantas para reducir la contaminación. Sin embargo, los modernos sistemas embebidos pueden proporcionar estas características con operaciones automatizadas y energía renovable no contaminante, tales como la solar, eólica y la geotérmica. Esto reduce el tamaño de las plantas mejorándose la rentabilidad económica.

Fuentes de energía distribuida[editar]

Los sistemas empleados como fuentes de energía distribuida (FED) son plantas de generación de energía a pequeña escala (normalmente entre el rango de 3 kW a 10.000 kW) usadas para proporcionar una alternativa o una ayuda a las tradicionales centrales de generación eléctricas. El problema radica en que estos generadores distribuidos son bastantes caros de instalar y poner en marcha.

Una popular fuente de energía distribuida son los paneles solares en los tejados de edificaciones. El coste de producción esta entre 0,99 € a 2,00 € por vatio (2007) más la instalación y los equipos de suministro.[1] Sin embargo la Energía Nuclear esta por encima de 2,2€ a 6,00€ por W (2007).[2] Algunas células solares (las del tipo "película delgada") presentan problemas al final de su vida útil, ya que poseen metales pesados, tales como teluro de cadmio (CdTe) y CIGS (CuInGaSe), materiales que necesitan ser reciclados. El lado positivo es que a diferencia del carbón y la nuclear, no hay coste de combustible o materias primas, ni contaminación, y requieren de mínima seguridad en su funcionamiento. La Solar también tiene un bajo ciclo de trabajo, produciendo picos de potencia en periodos diarios. El ciclo de trabajo medio típico es del 20%.

Otra fuente son los pequeños generadores eólicos. Estos tienen bajo mantenimiento, y baja contaminación. El coste de su instalación es ($0.80/W, 2007) mayor por vatio que la centrales tradicionales, excepto en las áreas con mucho viento donde los ratios de producción aumentan considerablemente. Las torres y generadores eólicos exigen de mayor coste en seguros causado por el hecho del viento y la soledad de las instalaciones, pero poseen una buena fiabilidad en el funcionamiento. La eólica suele ser complementaria a la solar; en los días cuando no hay sol suele hacer viento y viceversa.[cita requerida] Algunos emplazamientos de generación distribuida combinan energía eólica con energía solar como por ejemplo Slippery Rock University, la cual puede ser monitorizada online.

Las fuentes de cogeneracion distribuida usan microturbinas de gas natural como combustible o motores de explosión para activar los generadores. El calor generado es aprovechado para calentar aire o agua, o para activar un refrigerador por absorción[3] para aire acondicionado. El fuel limpio genera poca polución. esta plantas combinadas de generación eléctrica y calor normalmente tienen una irregular fiabilidad, aun así poseen excelentes coste de mantenimiento, aunque otros costes son inaceptables.

Los cogeneradores son además más caros por vatio que las centrales generadoras. Estas instalaciones han experimentado un auge porque las industrias consumen combustibles, y la cogeneración puede extraer un valor añadido a este fuel.

Algunas grandes instalaciones utilizan generación de ciclo combinado. Normalmente estas consisten en una turbina de gas que hierve agua para actuar sobre una turbina de vapor en un ciclo de Rankine. El condensador del ciclo de vapor proporciona el calor para calentar el aire o un refrigerado por absorción. Las plantas de ciclo combinado tienen grandes eficiencias térmicas, a menudo sobrepasando el 85%.

Una futura generación de vehículos eléctricos será capaz de entregar energía de su batería a la red de suministro de electricidad cuando se necesite.[4] Esto podría ser una importante fuente de generación distribuida en el futuro..

Modos de generación de energía[editar]

Los sistemas FED pueden incluir los siguientes dispositivos o tecnologías:

Comunicación en los sistemas FED[editar]

  • IEC 61850-7-420 está bajo desarrollo como una parte de la norma IEC 61850, la cual esta en completa consonancia con los modelos necesarios en los sistemas FED. Usa servicios de comunicación mapeados tanto por MMS como por las norma IEC 61850-8-1.
  • El OPC es otro mecanismo usado para la comunicación entre los diferentes elementos que constituyen un sistema FED.

La generación distribuida y las redes de distribución[editar]

Debido a que la generación distribuida (GD) se conecta a la red de distribución, cada vez se están dedicando más esfuerzos al estudio del impacto que ocasiona la generación distribuida en las redes de distribución a las cuales se conecta. Los estudios más importantes se centran en:

  1. Incentivos a las tecnologías de GD para su desarrollo (mecanismos regulatorios: primas, tarifas, certificados verdes etc..)
  2. Las nuevas inversiones y la planificación de la distribución teniendo en cuenta la GD
  3. Las potencias de cortocircuito en la red con GD
  4. Los servicios complementarios en la red con GD (regulación frecuencia - potencia, black start, control tensión - reactiva)
  5. Las pérdidas en la red con GD
  6. La operación y explotación de red con GD
  7. La seguridad del personal de mantenimiento con GD

Ventajas y Desventajas[editar]

Ventajas

  • Ayuda a la conservación del medio ambiente al utilizar fuentes de energía renovables
  • Descongestionan los sistemas de transporte de energía.
  • Aplazan la necesidad de readecuacion de los sietemas de transmisión.
  • Ayuda al sumistro de energía en periodos de gran demanda.
  • Mejora la fiabilidad del sistema.
  • Mejora la calidad del servicio eléctrico.
  • Evita costos de inversión en transmision y distribución

Desventajas

  • Existe aspectos relacionados con las fluctuaciones de voltaje que afecta a los consumidores vecinos
  • Requiere un sistema de adquisición de datos más complejo.
  • Alto costo de inversión inicial.
  • La falta de estándares para la conexión de pequeños generadores impide su desarrollo.

Requerimientos legales para la generación distribuida[editar]

Uno de los Estados pioneros en legislación sobre los GD ha sido Colorado, EUA que en 2010 promulgó una ley obligando a que en 2020 el 3% de la energía generada en Colorado utilice Energía Distribuida en alguna de sus formas.[5] [6]

Véase también[editar]

Referencias[editar]

Enlaces externos[editar]