Diferencia entre revisiones de «Motor Wankel»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Deshecha la edición 32903372 de 186.3.56.101. Plagio http://www.mailxmail.com/curso-motores-combustion-interna/sistema-lubricacion
Línea 14: Línea 14:


El rotor sigue un recorrido en el que mantiene sus 3 vértices en contacto con el alojamiento, delimitando así tres compartimentos separados de mezcla. A medida que el rotor gira dentro de la cámara, cada uno de los 3 volúmenes se expanden y contraen alternativamente; es esta expansión-contracción la que succiona el aire y el combustible hacia el motor, comprime la mezcla, extrae su energía expansiva y la expele hacia el escape.
El rotor sigue un recorrido en el que mantiene sus 3 vértices en contacto con el alojamiento, delimitando así tres compartimentos separados de mezcla. A medida que el rotor gira dentro de la cámara, cada uno de los 3 volúmenes se expanden y contraen alternativamente; es esta expansión-contracción la que succiona el aire y el combustible hacia el motor, comprime la mezcla, extrae su energía expansiva y la expele hacia el escape.
== Sistema de lubricación ==

Este sistema es el que mantiene lubricadas todas las partes móviles de un motor, a la vez que sirve como medio refrigerante.
Tiene importancia porque mantiene en movimiento mecanismos con elementos que friccionan entre sí, que de otro modo se engranarían, agravándose este fenómeno con la alta temperatura reinante en el interior del motor.
La función es la de permitir la creación de una cuña de aceite lubricante en las partes móviles, evitando el contacto metal con metal, además produce la refrigeración de las partes con alta temperatura al intercambiar calor con el medio ambiente cuando circula por zonas de temperatura más baja o pasa a través de un radiador de aceite.
Consta básicamente de una bomba de circulación, un regulador de presión, un filtro de aceite, un radiador de aceite y conductos internos y externos por donde circula.

El funcionamiento es el siguiente: un bomba, generalmente de engranajes, toma el aceite del depósito del motor, usualmente el carter, y lo envía al filtro a una presión regulada, se distribuye a través de conductos interiores y exteriores del motor a las partes móviles que va a lubricar y/o enfriar, luego pasa por el radiador donde se extrae parte del calor absorbido y retorna al depósito o carter del motor, para reiniciar el ciclo.
Para el correcto funcionamiento de este sistema se debe inspeccionar visualmente para detectar fugas, y presiones y temperaturas anormales de fluido (aceite) de lubricación.
Los controles al sistema pueden realizarse visualmente midiendo con la varilla de medición el nivel de aceite para controlar el consumo o detectar pérdidas y mediante instrumentos como son los manómetros de presión y los termómetros controlar las condiciones del aceite y del circuito y a la vez el funcionamiento del motor.
Las fallas del sistema básicamente son falta de nivel de aceite por pérdidas o consumos elevados, alta temperatura del aceite por mal estado del sistema de refrigeración del aceite o mal funcionamiento del motor, baja presión de aceite por bajo nivel o degradación del aceite, falla de la bomba de circulación, falla del regulador de presión o incremento en los huelgos de las partes móviles del motor por desgaste.
Las reparaciones del circuito, en la práctica se basan principalmente en la limpieza de los componentes del circuito y aletas del radiador de aceite, reemplazo de los filtros y cambios periódicos del aceite, antes de su degradación total. Las reparaciones mayores se limitan al reemplazo de los componentes dañados del circuito, los cuales en su mayoría son elementos estáticos y solamente la bomba de circulación es susceptible de roturas por tener partes en movimiento.
Fundamentalmente, al trabajar en este sistema se debe tener la precaución de que el mismo no se encuentre bajo presión y que el aceite se haya enfriado lo suficiente para que un contacto con él no produzca una quemadura. Para el cuidado del medio ambiente, se debe tener la precaución de recolectar todos los drenajes de aceite evitando derrames y disponerlo adecuadamente.


== Ventajas ==
== Ventajas ==

Revisión del 20:07 10 ene 2010

Motor Wankel.

El motor Wankel es un tipo de motor de combustión interna, inventado por Felix Wankel, que utiliza rotores en vez de los pistones de los motores alternativos.

Wankel concibió su motor rotativo en 1924 y recibió su patente en 1929. Durante los años 1940 se dedicó a mejorar el diseño. Se hizo un considerable esfuerzo en el desarrollo de motores rotativos en los 1950 y los 1960. Eran particularmente interesantes por funcionar de un modo suave, silencioso y fiable, gracias a la simplicidad de su diseño.

Funcionamiento

Animación de un motor Wankel

Un motor rotativo o Wankel, en honor a su creador el Dr. Felix Wankel, es un motor de combustión interna que funciona de una manera completamente diferente de los motores alternativos.

En un motor alternativo;en el mismo volumen (cilindro) se efectúan sucesivamente 4 diferentes trabajos - admisión, compresión, combustión y escape. En un motor Wankel se desarrollan los mismos 4 tiempos pero en lugares distintos de la carcasa o bloque; es decir, viene a ser como tener un cilindro dedicado a cada uno de los tiempos, con el pistón moviéndose continuamente de uno a otro. Más concretamente, el cilindro es una cavidad con forma de 8, dentro de la cual se encuentra un pistón triangular que realiza un giro de centro variable. Este pistón comunica su movimiento rotatorio a un cigüeñal que se encuentra en su interior, y que gira ya con un centro único.

Al igual que un motor de pistones, el rotativo emplea la presión creada por la combustión de la mezcla aire-combustible. La diferencia radica en que esta presión está contenida en la cámara formada por una parte del recinto y sellada por uno de los lados del rotor triangular, que en este tipo de motores reemplaza a los pistones.

El rotor sigue un recorrido en el que mantiene sus 3 vértices en contacto con el alojamiento, delimitando así tres compartimentos separados de mezcla. A medida que el rotor gira dentro de la cámara, cada uno de los 3 volúmenes se expanden y contraen alternativamente; es esta expansión-contracción la que succiona el aire y el combustible hacia el motor, comprime la mezcla, extrae su energía expansiva y la expele hacia el escape.

Ventajas

  • Menos piezas móviles: el motor Wankel tiene menos piezas móviles que un motor convencional, tan solo 4 piezas; bloque, rotor (que a su vez esta formado por segmentos y regletas), árbol motriz y sistema de refrigeracion/engrase (similar a los que montan los motores de pistón). Esto redunda en una mayor fiabilidad.
  • Suavidad de marcha: todos los componentes de un motor rotativo giran en el mismo sentido, en lugar de sufrir las constantes variaciones de sentido a las que está sometido un pistón. Están equilibrados internamente con contrapesos giratorios para suprimir cualquier vibración. Incluso la entrega de potencia se desarrolla en forma más progresiva, dado que cada etapa de combustión dura 90° de giro del rotor y a su vez como cada vuelta del rotor representa 3 vueltas del eje, cada combustión dura 270° de giro del eje, es decir, 3/4 de cada vuelta; compárenlo con un motor monocilíndrico, donde cada combustión transcurre durante 180° de cada 2 revoluciones, o sea 1/4 de cada vuelta del cigüeñal. Se produce una combustión cada 120º del rotor y 360º del eje.
  • Menor velocidad de rotación: dado que los rotores giran a 1/3 de la velocidad del eje, las piezas principales del motor se mueven más lentamente que las de un motor convencional, aumentando la fiabilidad.
  • Menores vibraciones: dado que las inercias internas del motor son muy pequeñas (no hay bielas, ni volante de inercia, ni recorrido de pistones), solo se producen pequeñas vibraciones en la excéntrica.
  • Menor peso: debido al menor número de piezas que forman el motor en comparación con los de pistones y dado que generalmente se construyen motores de dos o tres rotores de 600cc o 700cc cada uno, ayuda a conseguir un menor peso final del mismo.

Desventajas

  • Emisiones: es más complicado (aunque no imposible) ajustarse a las normas de emisiones contaminantes.
  • Costos de mantenimiento: al no estar tan difundido, su mantenimiento resulta costoso.
  • Consumo: la eficiencia termodinámica (relación consumo-potencia) se ve reducida por la forma alargada de las cámaras de combustión y la baja relación de compresión.
  • Difícil estanqueidad: resulta muy difícil aislar cada una de las 3 secciones del cilindro en rotación, que deben ser impermeables unas de otras para un buen funcionamiento. Además se hace necesario cambiar el sistema de estanqueidad cada 6 años aproximadamente, por su fuerte desgaste.
  • Sincronización: la sincronización de los distintos componentes del motor debe ser muy buena para evitar que la explosión de la mezcla se inicie antes de que el pistón rotativo se encuentre en la posición adecuada. Si esto no ocurre, la ignición empujará en sentido contrario al deseado, pudiendo dañar el motor.

Historia

En Gran Bretaña, Norton Motorcycles desarrolló un motor Wankel para motocicletas, que fue incluido en la Norton Commander; Suzuki también fabricó una moto con motor Wankel, la RE-5. DKW Hercules puso en venta una motocicleta con motor Sachs refrigerado por aire y mezcla; John Deere Inc, en EEUU, invirtió un gran esfuerzo en la investigación de motores rotativos y diseñó una versión que era capaz de usar varios tipos de combustible sin tener que cambiar el motor. El diseño fue propuesto como sistema motriz para varios vehículos de combate de la Marina estadounidense en los últimos años de la década de 1980. Ingersoll-Rand tuvo en venta un motor para usos industriales que quemaba gas y tenía una cilindrada de 41 litros y un sólo rotor. Curtiss-Wright ha fabricado diversos prototipos de motor para aviación general, en donde tendría la ventaja del menor peso y mejor conducta frente a las averías. Rolls-Royce desarrolló un motor de encendido por compresión (Diesel), con etapas de compresión y combustión independientes. Graupner vendió un mini-motor para aeromodelos. La japonesa Yanmar Diesel fabricó varios motores pequeños, incluso una motosierra Wankel.

Tras un uso ocasional en automóviles, por ejemplo NSU con sus modelos Spider y Ro 80 o Citroën con el M 35 y GS Birrotor, e intentos fracasados llevados a cabo por General Motors que anunció haber resuelto el problema del consumo pero no poder con el de las emisiones en los gases de escape, o Mercedes-Benz (véase el prototipo Mercedes Benz C-111), la compañía japonesa Mazda ha sido la que ha hecho un mayor uso de motores Wankel en automóviles.

Después de muchos años de desarrollo, Mazda lanzó sus primeros coches con motores Wankel en los primeros años 1970. Aunque la mayoría de los clientes adoraban estos coches, especialmente por su suavidad, tuvieron la mala suerte de ser puestos a la venta en una época de grandes esfuerzos para reducir las emisiones y aumentar el ahorro de combustible. Mazda abandonó el Wankel casi totalmente en el diseño de sus coches generalistas, pero continuó usando una versión biturbo de dos rotores en su mítico deportivo RX-7 hasta el final de su producción en Agosto de 2002. En 2003, la marca japonesa, relanzó el motor Wankel con el RX-8 que contaba con una nueva versión atmosférica birrotor, teóricamente más fiable y con menores consumos tanto de combustible como de lubricante.

En el mundo de las carreras, Mazda ha tenido un éxito sustancial con sus coches de dos y cuatro rotores, y corredores privados han cosechado también un considerable éxito con coches Mazda propulsados por motores Wankel, tanto originales como modificados. En 1991 el motor wankel llegó a uno de los mejores momentos en competición, al conseguir Mazda la victoria en las 24 horas de Le Mans con su prototipo 787B que montaba un motor de cuatro rotores y 2622 cc de cilindrada.

Curtiss-Wright demostró que el factor que controla las emisiones de hidrocarburos no quemados (HC) era la temperatura de la superficie del rotor, a mayor temperatura, menos producción de HC, y demostró también que se podía ensanchar el rotor. Otros fabricantes proponen que la causa fundamental de la emisión de contaminantes a altas r.p.m. es el laminado dentro de la cámara de combustión, y a bajas velocidades, las fugas de estanqueidad. El motor Wankel por sus propias características produce poca contaminación por NO. Yanmar Diesel ha publicado información referente a las características intrínsecas de diversas formas y colocaciones del receso de combustión en la superficie del rotor, (cosa que puede verse también en el libro de Kenichi Yamamoto "Rotary engine") en sus motores de pequeño desplazamiento y refrigeración del rotor por mezcla aire/combustible,YD comprobaron que la colocación de una válvula de lengüetas (reed-valve) cerca de la lumbrera de admisión mejoraba las actuaciones bajo carga parcial y a bajas r.p.m. Inicialmente, los motores Wankel tenían las lumbreras de admisión y escape en las caras laterales del rotor lo que produjo algún problema de depósitos de cabonilla que sólo llegó a resolverse en el motor Renesis de Mazda mediante la colocación de un segmento especial rascador en la cara lateral del rotor. De las dos disposiciones posibles para las lumbreras de admisión, la periférica y la lateral, se sabe que la periférica produce la máxima presión media efectiva (PME) en el motor, pero en uso automovilista se ha preferido (Mazda) la lumbrera lateral que proporciona un mejor régimen de ralentí. El motor Renesis del RX8 de Mazda, emplea lumbreras de admisión y escape laterales, con lo que elimina totalmente el cruce o solapamiento entre las fases de admisión y escape, suprimiendo la recirculación de gases de escape y la fuga de mezcla aire/combustible sin quemar por el escape, posibilitando unos consumos razonables y cumpliendo al mismo tiempo las normas anticontaminación más severas. Algún motor de los primeros tiempos producía un ruido que los mecánicos comparaban al que hace un motor convencional antes de fundir una biela, el ruido se debía a las tolerancias entre el engranaje del eje y el del rotor que era necesario establecer para no comprometer la duración del motor. Ya se ha solucionado. Otro problema inicial fué la aparición de rayaduras y fisuras en la superficie de la epitrocoide,se resolvió colocando la bujía en un casquillo incrustado en el bloque, en vez de directamente sobre el bloque mismo.

Materiales: para el estator o bloque motor se utilizan aleaciones de aluminio, aluminio/silicio o Al/Si/Cu como por ejemplo la aleación Alcoa A-132, ya que el aluminio tiene una mayor conductividad térmica y un coeficiente de dilatación más adecuado. En el interior del bloque se coloca una lámina de acero con la forma de la epitrocoide, con rugosidades en su cara externa para asegurar el anclado al bloque, y sobre ésta lámina se aplica una capa de revestimiento antifricción, como por ejemplo el Nickasil de Citroen (ver patente en www.oepm.es ,patentes Nº374366 y 375053-1969- o la patente canadiense del revestimiento del motor de la Suzuki RE5, de: Grazen, Alfred EP: CA 602098 y CA 651826). Los rotores se fabrican en fundición de hierro. Suzuki resolvió el problema de la duración del motor, extendiéndola a más de 250.000 km, empleando segmentos de vértice hechos de la aleación ferrotic. Como combustible, dada la ausencia de puntos calientes en la cámara de combustión, se ha calculado que una gasolina con un octanaje de 87 es suficiente,lo que puede representar una ventaja práctica. Respecto a la lubricación, que se hace como en los motores de 2T mediante mezcla combustible/aceite, se han usado los sistemas de mezcla previa o una bomba dosificadora que añade una pequeña cantidad de aceite a la admisión,igual al emleado para lubricación y refrigeración del rotor. En los motores con refrigeración por carga, uno de los aceites que ha dado mejores resultados es el Shell Rotella 30. Los motores con refrigeración por agua necesitan un lubricante multigrado para facilitar los arranques en frío, aceite que debe ser de naturaleza mineral y no sintético para evitar la producción de cenizas y gomas en la combustión. (Ver SAE papers en www.SAE.org/store)

Referencias bibliográficas: Arnold E Biermann y Hermann H Ellerbrock, Jr: "The design of fins for air cooled cylinders", NACA Report Nº 726, 1939. (puede descargarse desde el sitio web de la NASA); Kenichi Yamamoto: "Rotary engine",Toyo Kogyo Co. Ltd., Mazda, Eds. 1969 y 1981; Dante Giacosa: "Motores endotermicos", Ed. Omega,2000

Véase también

Enlaces externos