Diferencia entre revisiones de «Sistema no lineal»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Esta obra contiene una traducción derivada del articulo respectivo de Wikipedia en inglés, concretamente la versión válida al dia de la traducción, publicada por sus editores bajo la Licencia de documentación libre de GNU y la Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported.
Línea 1: Línea 1:
En [[matemáticas]], los '''sistemas no lineales''' representan sistemas cuyo comportamiento no es expresable como la suma de los comportamientos de sus descriptores. Más formalmente, un sistema físico, matemático o de otro tipo es no lineal cuando las [[ecuación de movimiento|ecuaciones de movimiento]], evolución o comportamiento que regulan su comportamiento son no lineales. En particular, el comportamiento de sistemas no lineales no está sujeto al [[principio de superposición]], como lo es un [[Linealidad #Sistemas lineales|sistema lineal]].
En [[matemáticas]], los '''sistemas no lineales''' representan sistemas cuyo comportamiento no es expresable como la suma de los comportamientos de sus descriptores. Más formalmente, un sistema físico, matemático o de otro tipo es no lineal cuando las [[ecuación de movimiento|ecuaciones de movimiento]], evolución o comportamiento que regulan su comportamiento son no lineales. En particular, el comportamiento de sistemas no lineales no está sujeto al [[principio de superposición]], como lo es un [[Linealidad #Sistemas lineales|sistema lineal]].


En diversas ramas de las ciencias la no linealidad es la responsable de comportamientos complejos y, frecuentemente, impredictibles o [[teoría del caos|caóticos]]. La no linealidad frecuentemente aparece ligada a la autointeracción, el efecto sobre el propio sistema del estado anterior del sistema. En física, biología o economía la no linealidad de diversos subsistemas es una fuente de problemas complejos, en las últimas décadas la aparición de los ordenadores digitales y la simulación numérica ha disparado el interés científico por los sistemas no lineales, ya que por primera vez muchos sistemas han podido ser investigados de manera más o menos sistemática.
En diversas ramas de las ciencias la no linealidad es la responsable de comportamientos complejos y, frecuentemente, impredictibles o [[teoría del caos|caóticos]]. La no linealidad frecuentemente aparece ligada a la autointeracción, el efecto sobre el propio sistema del estado anterior del sistema.

En física <ref>{{cite journal|last1=Gintautas|first1=V.|title=Resonant forcing of nonlinear systems of differential equations|journal=Chaos|date=2008|volume=18|issue=3|pages=033118|doi=10.1063/1.2964200|pmid=19045456|arxiv=0803.2252|bibcode=2008Chaos..18c3118G|s2cid=18345817}}</ref><ref>{{cite journal|last1=Stephenson|first1=C.|last2=et.|first2=al.|title=Topological properties of a self-assembled electrical network via ab initio calculation|journal=Sci. Rep.|volume=7|pages=41621|date=2017|doi=10.1038/srep41621|pmid=28155863|pmc=5290745|bibcode=2017NatSR...741621S}}</ref> [[matemáticas]].<ref>{{cite book|last1=de Canete|first1=Javier, Cipriano Galindo, and Inmaculada Garcia-Moral|title=System Engineering and Automation: An Interactive Educational Approach|date=2011|publisher=Springer|location=Berlin|isbn=978-3642202292|page=46|url=https://books.google.com/books?id=h8rCQYXGGY8C&q=most+systems+are+inherently+nonlinear+in+nature&pg=PA46|access-date=20 January 2018}}, biología, ingeniería o economía la no linealidad es inherente a diversos subsistemas es una fuente de problemas complejos, en las últimas décadas la aparición de los ordenadores digitales y la simulación numérica ha disparado el interés científico por los sistemas no lineales, ya que por primera vez muchos sistemas han podido ser investigados de manera más o menos sistemática.<ref>{{Citation|date=2007|pages=181–276|publisher=Springer Berlin Heidelberg|language=en|doi=10.1007/978-3-540-34153-6_7|isbn=9783540341529|title = The Nonlinear Universe|series = The Frontiers Collection|chapter = Nonlinear Biology}}</ref><ref>{{cite journal|last1=Korenberg|first1=Michael J.|last2=Hunter|first2=Ian W.|date=March 1996|title=The identification of nonlinear biological systems: Volterra kernel approaches|journal=Annals of Biomedical Engineering|language=en|volume=24|issue=2|pages=250–268|doi=10.1007/bf02667354|pmid=8678357|s2cid=20643206|issn=0090-6964}}</ref><ref>{{cite journal|last1=Mosconi|first1=Francesco|last2=Julou|first2=Thomas|last3=Desprat|first3=Nicolas|last4=Sinha|first4=Deepak Kumar|last5=Allemand|first5=Jean-François|last6=Vincent Croquette|last7=Bensimon|first7=David|date=2008|title=Some nonlinear challenges in biology|url=http://stacks.iop.org/0951-7715/21/i=8/a=T03|journal=Nonlinearity|language=en|volume=21|issue=8|pages=T131|doi=10.1088/0951-7715/21/8/T03|issn=0951-7715|bibcode=2008Nonli..21..131M|s2cid=119808230 }}</ref> Los [[sistemas dinámicos]]s no lineales, que describen cambios en las variables a lo largo del tiempo, pueden parecer caóticos, impredecibles o contraintuitivos, lo que contrasta con [[sistemas lineales]]s mucho más sencillos.


== Introducción ==
== Introducción ==

Revisión del 14:36 21 mar 2023

En matemáticas, los sistemas no lineales representan sistemas cuyo comportamiento no es expresable como la suma de los comportamientos de sus descriptores. Más formalmente, un sistema físico, matemático o de otro tipo es no lineal cuando las ecuaciones de movimiento, evolución o comportamiento que regulan su comportamiento son no lineales. En particular, el comportamiento de sistemas no lineales no está sujeto al principio de superposición, como lo es un sistema lineal.

En diversas ramas de las ciencias la no linealidad es la responsable de comportamientos complejos y, frecuentemente, impredictibles o caóticos. La no linealidad frecuentemente aparece ligada a la autointeracción, el efecto sobre el propio sistema del estado anterior del sistema.

En física [1][2]matemáticas.Error en la cita: Error en la cita: existe un código de apertura <ref> sin su código de cierre </ref>[3][4]​ Los sistemas dinámicoss no lineales, que describen cambios en las variables a lo largo del tiempo, pueden parecer caóticos, impredecibles o contraintuitivos, lo que contrasta con sistemas linealess mucho más sencillos.

Introducción

La linealidad de un sistema permite a los investigadores hacer ciertas suposiciones matemáticas y aproximaciones, permitiendo un cálculo más sencillo de los resultados. Ya que los sistemas no lineales no son iguales a la suma de sus partes, usualmente son difíciles (o imposibles) de modelar, y sus comportamientos con respecto a una variable dada (por ejemplo, el tiempo) es extremadamente difícil de predecir.

Algunos sistemas no lineales tienen soluciones exactas o integrables, mientras que otros tienen comportamiento caótico, por lo tanto no se pueden reducir a una forma simple ni se pueden resolver. Un ejemplo de comportamiento caótico son las olas gigantes. Aunque algunos sistemas no lineales y ecuaciones de interés general han sido extensamente estudiados, la vasta mayoría son pobremente comprendidos.

Sistemas lineales

En matemáticas una función lineal es aquella que satisface las siguientes propiedades (ya que en un sistema tiene que poner en conjunto de dos o más ecuaciones).

  1. Aditividad:
  2. Homogeneidad:

Estas dos reglas tomadas en conjunto se conocen como Principio de superposición.

Sistemas no lineales

Las ecuaciones no lineales son de interés en física y matemáticas debido a que la mayoría de los problemas físicos son implícitamente no lineales en su naturaleza. Ejemplos físicos de sistemas lineales son relativamente raros. Las ecuaciones no lineales son difíciles de resolver y dan origen a interesantes fenómenos como la teoría del caos. Una ecuación lineal puede ser descrita usando un operador lineal, L. Una ecuación lineal en algún valor desconocido de tiene la forma

Una ecuación no lineal es una ecuación de la forma:

Para algún valor desconocido de .

Para poder resolver cualquier ecuación se necesita decidir en qué espacio matemático se encuentra la solución . Podría ser que es un número real, un vector o, tal vez, una función con algunas propiedades.

Las soluciones de ecuaciones lineales pueden ser generalmente descritas como una superposición de otras soluciones de la misma ecuación. Esto hace que las ecuaciones lineales sean fáciles de resolver.

Las ecuaciones no lineales son mucho más complejas, y mucho más difíciles de entender por la falta de soluciones simples superpuestas. Para las ecuaciones no lineales las soluciones generalmente no forman un espacio vectorial y, en general, no pueden ser superpuestas para producir nuevas soluciones. Esto hace el resolver las ecuaciones mucho más difícil que en sistemas lineales.

Herramientas para la solución de ciertas ecuaciones no lineales

Al día de hoy, existen muchas herramientas para analizar ecuaciones no lineales, por mencionar algunas tenemos: dinámica de sistemas, teorema de la función implícita y la teoría de la bifurcación

  • Malinietski G.G. 2006. Fundamentos matemáticos de la sinergética. Caos, estructuras y simulación por ordenador. [1].

Ejemplos de sistemas no lineales

Una importante colección de sistemas físicos y de otro tipo parecen venir descritos por sistemas de ecuaciones de evolución temporal que de hecho son ecuaciones diferenciales no lineales, algunos ejemplos notorios de no linealidad son los siguientes:

Véase también

Referencias

  1. Gintautas, V. (2008). «Resonant forcing of nonlinear systems of differential equations». Chaos 18 (3): 033118. Bibcode:2008Chaos..18c3118G. PMID 19045456. S2CID 18345817. arXiv:0803.2252. doi:10.1063/1.2964200. 
  2. Stephenson, C.; et., al. (2017). «Topological properties of a self-assembled electrical network via ab initio calculation». Sci. Rep. 7: 41621. Bibcode:2017NatSR...741621S. PMC 5290745. PMID 28155863. doi:10.1038/srep41621. 
  3. Korenberg, Michael J.; Hunter, Ian W. (March 1996). «The identification of nonlinear biological systems: Volterra kernel approaches». Annals of Biomedical Engineering (en inglés) 24 (2): 250-268. ISSN 0090-6964. PMID 8678357. S2CID 20643206. doi:10.1007/bf02667354. 
  4. Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Vincent Croquette; Bensimon, David (2008). «Some nonlinear challenges in biology». Nonlinearity (en inglés) 21 (8): T131. Bibcode:2008Nonli..21..131M. ISSN 0951-7715. S2CID 119808230. doi:10.1088/0951-7715/21/8/T03. 

Bibliografía

Enlaces externos