Teorema de la base de Hilbert

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En Matemáticas, el teorema de la base de Hilbert o teorema fundamental de Hilbert toma su nombre de David Hilbert que fue el primero en probarlo en 1888.

Sea un anillo conmutativo con 1 (puede ser 1=0, entonces ). Se dice que es noetheriano si todo ideal de está finitamente generado. Es fácil probar que son equivalentes:

  1. es noetheriano.
  2. Todo conjunto no vacío de ideales de admite un elemento maximal
  3. cumple la condición de cadena ascendente (ACC o CCA):

Si

es una cadena de ideales, entonces existe tal que

.

Teorema fundamental de Hilbert[editar]

Si es noetheriano, entonces es noetheriano.