Punto de acumulación

De Wikipedia, la enciclopedia libre
(Redirigido desde «Punto límite»)
Saltar a: navegación, búsqueda

En topología, el concepto de punto de acumulación (también denominado de contacto o límite o punto de aglomeración [1] ) de un conjunto en un espacio captura la noción informal de punto que está arbitrariamente próximo al conjunto sin pertenecer necesariamente a él. Informalmente hablando, un punto de acumulación de un conjunto S en un espacio topológico X es un punto x en X que puede ser aproximado por puntos de S distintos a x tanto como se desee.

Este concepto generaliza la noción de límite y puede ser base de conceptos como conjunto cerrado y cerradura topológica. Ciertamente, un conjunto es cerrado si y solo si contiene todos sus puntos de acumulación, y la operación topológica de cerradura puede considerarse como el resultado de agregar a un conjunto todos sus puntos de acumulación.

Definición[editar]

Si S es un subconjunto de un espacio topológico X, un punto x\in X es un punto de acumulación de S si cualquier conjunto abierto que contenga a x contiene otro punto s\in S distinto de x. Es decir, cualquier vecindad de x contiene un punto de S distinto a x.

Ejemplos
  • El intervalo (0,1) tiene como puntos de acumulación a todos los puntos del intervalo [0,1].
  • Un conjunto finito de números reales en la topología estándar no tiene puntos de acumulación.
  • Sin embargo, cualquier número es un punto de acumulación de un conjunto finito en la topología indiscreta de los números reales.
  • \mathbb{N} no tiene puntos de acumulación cuando se considera como subconjunto de \mathbb{R} en la topología estándar. Por lo tanto, cada punto en N es aislado.

Propiedades[editar]

Caracterización de los puntos de acumulación[editar]

x es un punto límite de S si y solo sí está en la cerradura de S \ {x}. 'Demostración: Partamos del hecho de que un punto está en la cerradura de un conjunto si y solo si toda vecindad del punto tiene intersección no vacía con el conjunto. Ahora, x es un punto límite de S ssi toda vecindad de x contiene un punto de S distinto a x ssi toda vecindad de x contiene un punto de S \ {x} sii x está en la cerradura de S \ {x}.

  • Si usamos L(S) para denotar el conjunto de puntos límite de S, entonces tenemos la siguiente caracterización de la cerradura de S: La cerradura de S es igual a la unión de S y L(S).
    • Demostración: Supongamos que x está en la cerradura de S. Si x está en S, está demostrado. Si x no está en S, entonces toda vecindad de x contiene un punto de S, y este punto no puede ser s. En otras palabras, x es un punto límite de S y x está en L(S).

Recíprocamente, si x está en S, entonces toda vecindad de x claramente tiene intersección no vacía con S, así que x está en la cerradura de S. Si x está en L(S), entonces toda vecindad de x contiene un punto de S (distinto de x), así que x está en la cerradura de S. Esto completa la prueba.

  • Un corolario de este resultado nos da una caracterización de los conjuntos cerrado: un conjunto S es cerrado si y solo si este contiene a todos sus puntos límite.

Caracterización de conjuntos cerrados[editar]

  • Teorema: E \, es un conjunto cerrado si E'\subset E , donde E'\, es el conjunto de todos los puntos de acumulación de E\,.

Válido en espacios métricos y topológicos. Y válido en cualquier espacio.

Otras propiedades[editar]

  • Ningún punto aislado es el punto de límite de un conjunto que no lo contenga.
  • Un espacio X es discreto si y solo si ningún subconjunto de X tiene puntos límites.
  • Si un espacio X tiene la topología trivial y S es un subconjunto de X con más de un elemento, entonces todos los elementos de X son puntos límites de S.

Referencias[editar]

  1. Kelley: Topología general, Eudeba ,Buenos Aires

Véase también[editar]

Referencias[editar]

W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976. ISBN 0-07-054235-X