Ir al contenido

Principio del trébol

De Wikipedia, la enciclopedia libre

En matemáticas, y particularmente en teoría de conjuntos, el principio del trébol S ("clubsuit" en inglés) es una familia de principios combinatorios que son una versión más débil del S correspondiente. Fue introducido en 1975 por Adam Ostaszewski.[1]

Definición

[editar]

Para un número cardinal dado y un conjunto estacionario , es la afirmación de que existe una sucesión tal que:

  • Cada Aδ es un cofinal subconjunto de δ
  • Por cada subconjunto no acotado , hay un de modo que generalmente se escribe simplemente como .

♣ y ◊

[editar]

Está claro que el ⇒ ♣, y se demostró en 1975 que ♣ + hipótesis del continuo ⇒ ◊. Sin embargo, Saharon Shelah demostró en 1980 que existe un modelo de ♣ en el que la hipótesis del continuo (CH) no se cumple, por lo que ♣ y ◊ no son equivalentes (ya que ◊ ⇒ CH).[2]

Véase también

[editar]

Referencias

[editar]
  1. Ostaszewski, Adam J. (1975). «On countably compact perfectly espacio normals». London Mathematical Society 14: 505-516. doi:10.1112/jlms/s2-14.3.505. 
  2. Shelah, S. (1980). «Whitehead groups may not be free even assuming CH, II». Israel Journal of Mathematics 35: 257-285. doi:10.1007/BF02760652.