Diferencia entre revisiones de «Impulso»
Línea 35: | Línea 35: | ||
y efectivamente, |
y efectivamente, |
||
{{ecuación|<math>\left [ kg \frac {m}{s} \right ] = \left [ kg \frac {m}{s} \right ]</math>||left}} |
{{ecuación|<math>\left [ kg \frac {m}{s} \right ] = \left [ kg \frac {m}{s} \right ]</math>||left}} |
||
con lo que hemos comprobado que <math>\left [ I \right ] = \left [\Delta p \right ]</math>, por lo que el impulso de la fuerza aplicada es igual a la cantidad de movimiento que provoca, o dicho de otro modo, el incremento de la cantidad de movimiento de cualquier cuerpo es igual al impulso de la fuerza que se ejerce sobre él. |
con lo que hemos comprobado que <math>\left [ I \right ] = \left [\Delta p \right ]</math>, por lo que el impulso de la fuerza aplicada es igual a la cantidad de movimiento que provoca, o dicho de otro modo, el incremento de la cantidad de movimiento de cualquier cuerpo es igual al impulso de la fuerza que se ejerce sobre él. pico |
||
== Conservación del momento lineal == |
== Conservación del momento lineal == |
Revisión del 22:11 31 oct 2009
En mecanica, se denomina impulso a la magnitud física, generalmente representada como (I), definida como la variación en la cantidad de movimiento que experimenta un objeto en un sistema cerrado. El término difiere de lo que cotidianamente conocemos como impulso y fue acuñado por Isaac Newton en su segunda ley, donde la llamó vi motrici refiriéndose a una especie de fuerza del movimiento.[1]
Definición
Definición formal
En la mecánica clásica, a partir del segunda ley de Newton sobre la fuerza tenemos que:
si multiplicamos a ambos lados por un :
lo que nos dice que el cambio en la cantidad de movimiento es proporcional a una fuerza aplicada sobre la partícula durante algún intervalo de tiempo:
A lo que llamamos impulso es ese valor de la integral de la fuerza en el tiempo:
Definición más simple
El concepto de impulso se puede introducir mucho antes del conocimiento sobre el cálculo diferencial e integral con algunas consideraciones. Si la masa no varía en el tiempo, la cantidad de movimiento se puede tomar como el simple producto entre la velocidad () y la masa (). Según la segunda ley de Newton, si a una masa se le aplica una fuerza aquélla adquiere una aceleración , de acuerdo con la expresión:
multiplicando ambos miembros por el tiempo en que se aplica la fuerza:
Como , tenemos:
y finalmente:
que es el equivalente cuando la fuerza no depende del tiempo.
Unidades
Un impulso cambia el momento lineal de un objeto, y tiene las mismas unidades y dimensiones que el momento lineal. Las unidades del impulso en el Sistema Internacional son kg·m/s.
Para deducir las unidades podemos utilizar la definición más simple, donde tenemos:
considerando que , y sustituyendo, resulta
y efectivamente,
con lo que hemos comprobado que , por lo que el impulso de la fuerza aplicada es igual a la cantidad de movimiento que provoca, o dicho de otro modo, el incremento de la cantidad de movimiento de cualquier cuerpo es igual al impulso de la fuerza que se ejerce sobre él. pico
Conservación del momento lineal
Como hemos visto, la variación en la cantidad del movimiento y el impulso van estrechamente ligados. La conservación de la cantidad de movimiento lineal es una de las cantidades físicas que en un sistema cerrado aparecen inalterables. Así, si sobre un sistema no se ejerce fuerza neta alguna, el momento lineal total del sistema no puede variar. Y para nuestro caso: para hacer variar la cantidad de movimiento de un cuerpo es necesario aplicarle un impulso producto de una fuerza.[2]
Choques
Los choques son interacciones de dos o más cuerpos en el que existe contacto entre ellos durante un tiempo tanto determinado como indeterminado. Existen distinos tipos de choque, los choques elásticos, inelásticos y totalmente inelásticos. Todos estos choques tienen la característica de conservar su momentum o cantidad de movimiento, pero no así su energía mecánica, que en la mayoría de los casos solo se considera la energía cinética. Los choques que son elásticos mantienen el momentum inicial del sistema igual al final al igual que la energía cinética total del sistema. Dentro de este tipo de choque es importante mecionar un caso importantes que es el choque de dos cuerpos de igual masa y uno de ellos inicialmente en reposo. En el caso de que ambos cuerpos tengan la misma masa y uno de ellos se encuentra en reposo, al impactar se transferirá la energía desde el cuerpo en movimiento hacia el que no se esta moviendo, quedando el cuerpo inicialmente en movimiento en reposo, mientras que el otro seguirá en movimiento, el mismo que seguía el primer cuerpo, un ejemplo de este es el juego de pool o billar. Mientras dura el choque cabe señalar que en el contacto de ambos cuerpos la energía se almacena en una desformación mínima y no permanente.
Choque elástico
En física, en el caso ideal, una colisión perfectamente elástica es un choque entre dos o más cuerpos que no sufren deformaciones permanentes debido al impacto. En una colisión perfectamente elástica se conservan tanto el momento lineal como la energía cinética del sistema. Claro está que durante una colisión, aunque sean de dos sólidos, no se puede considerar perfectamente elástico ya que siempre hay una deformación.
Las colisiones en las que la energía no se conserva producen deformaciones permanentes de los cuerpos y se denominan colisiones inelásticas.
Colisiones elásticas son aquellas en las cuales no hay intercambio de masa entre los cuerpos que colisionan, sin embargo, hay conservación neta de energía cinética.
Choque inelástico
En un choque inelástico los cuerpos presentan deformaciones luego de su separación; esto es una consecuencia del trabajo realizado. En el caso ideal de un choque perfectamente inelástico, los objetos en colisión permanecen pegados entre sí. El marco de referencia del centro de masas permite presentar una definición más precisa. En los choques inelásticos la energía cinética no se conserva, ya que está es "usada" para deformar el cuerpo.
Véase también
Notas y referencias
- ↑ Newton, Isaac (1760). http://books.google.com/books?id=TN9JAAAAMAAJ&pg=RA1-PA21&dq=vi+motrici+Philosophiae+naturalis+principia+mathematica&hl=de
|urlcapítulo=
sin título (ayuda). Philosophiae naturalis principia mathematica. p. 21. ISBN. - ↑ Juan Inzunza B. (2002). Física. Introducción a la Mecánica. Talleres Dirección de Docencia. ISBN 956-8029-35-4.
- Marcelo Alonso, Edward J. Finn (1976). Física. Fondo Educativo Interamericano. ISBN 84-03-20234-2.
- Richard Feynman (1974). Feynman lectures on Physics Volume 1 (en inglés). Addison Wesley Longman. ISBN 0-201-02115-3.
Enlaces externos
- Wikiversidad alberga proyectos de aprendizaje sobre Impulso.
- Wikilibros alberga un libro o manual sobre Impulso.
- Wikcionario tiene definiciones y otra información sobre Impulso.
- Impulso y Cantidad de movimiento
- Impulso