Diferencia entre revisiones de «Herschel (observatorio espacial)»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
Xosema (discusión · contribs.)
m Deshecha la edición 30972870 de 79.157.210.148 (disc.)
Línea 1: Línea 1:
[[Archivo:Herschel Space Observatory.jpg|right|200px|thumb|Concepción artística sobre el Observatorio Espacial Herschel.]]
[[Archivo:Herschel Space Observatory.jpg|right|200px|thumb|Concepción artística sobre el Observatorio Espacial Herschel.]]
El '''Observatorio Espacial Herschel''' es una misión de la [[Agencia Espacial Europea]]. El lanzamiento se realizó el 14 de mayo de [[2009]] a bordo de un [[Ariane 5]] junto con el observatorio [[Planck Surveyor]], en previsión de que entren en órbita a 1,5 millones de km de la Tierra, en el segundo de los [[puntos de Lagrange]] del sistema Tierra-Sol.<ref>{{cita web|url = http://www.elpais.com/articulo/putas
El '''Observatorio Espacial Herschel''' es una misión de la [[Agencia Espacial Europea]]. El lanzamiento se realizó el 14 de mayo de [[2009]] a bordo de un [[Ariane 5]] junto con el observatorio [[Planck Surveyor]], en previsión de que entren en órbita a 1,5 millones de km de la Tierra, en el segundo de los [[puntos de Lagrange]] del sistema Tierra-Sol.<ref>{{cita web|url = http://www.elpais.com/articulo/sociedad/Herschel/Planck/inician/viaje/espacio/elpepusoc/20090514elpepusoc_3/Tes |título = 'Herschel' y 'Planck' inician su viaje por el espacio|fechaacceso = 15 de mayo 2009 |autor = Alicia Rivera|último = |primero = |fecha = 14 de mayo de 2009 |editorial = El País|idioma = }}</ref>

La misión era denominada anteriormente '''Far Infrared and Submilimetre Telescope''' ('''FIRST'''), y será el primer observatorio espacial en cubrir completamente el [[infrarrojo lejano]] y longitudes de onda submilimétricas, y su telescopio tendrá el mayor espejo desplegado nunca en el espacio (3,5 m). Este observatorio estará especializado en la observación de objetos distantes, poco conocidos. Para el correcto funcionamiento de los instrumentos se deben mantener refrigerados por debajo de los 2 K (-271&nbsp;°C)

El observatorio tiene aproximadamente 7 metros de longitud y pesará unas 3,25 [[tonelada|t]]. La mayor parte del peso de la sonda será debido a los depósitos de [[helio]] usados para generar las temperaturas necesarias para los detectores de infrarrojos.

La misión fue nombrada en honor de [[William Herschel]], descubridor del espectro [[infrarrojo]].
La misión fue nombrada en honor de [[William Herschel]], descubridor del espectro [[infrarrojo]].


Línea 30: Línea 35:
La cámara se compone de dos sensores fotométricos multipixel. Puede observar en dos frecuencias simultáneamente, centrada la primera en 75 ó 110 μm y la segunda en 150 μm. El primer sensor tiene 64 × 32 pixeles y el segundo dispone de 32 × 16 pixeles. El campo de visión es de 1,75 × 3,5 minutos de arco y la resolución de la cámara es, para ambos sensores, superior a la determinada por el límite de [[difracción]] del telescopio con lo que se consigue la máxima resolución posible a estas frecuencias.
La cámara se compone de dos sensores fotométricos multipixel. Puede observar en dos frecuencias simultáneamente, centrada la primera en 75 ó 110 μm y la segunda en 150 μm. El primer sensor tiene 64 × 32 pixeles y el segundo dispone de 32 × 16 pixeles. El campo de visión es de 1,75 × 3,5 minutos de arco y la resolución de la cámara es, para ambos sensores, superior a la determinada por el límite de [[difracción]] del telescopio con lo que se consigue la máxima resolución posible a estas frecuencias.


El espectrómetro de campo integral tiene un campo de visión de 47 × 47 segundos de arco muestreado por 5 × 5 pixeles en la dimensión espacial. La resoluciófurciasn espectral ve desde unos 75 a unos 300 km/s con una cobertura de unos 1500 km/s. También dispone de dos sensores, [[bolómetro]]s en este caso, que permiten observar en dos bandas simultáneamente.
El espectrómetro de campo integral tiene un campo de visión de 47 × 47 segundos de arco muestreado por 5 × 5 pixeles en la dimensión espacial. La resolución espectral ve desde unos 75 a unos 300 km/s con una cobertura de unos 1500 km/s. También dispone de dos sensores, [[bolómetro]]s en este caso, que permiten observar en dos bandas simultáneamente.


=== SPIRE ===
=== SPIRE ===
Línea 36: Línea 41:
SPIRE dispone de una cámara fotométrica que puede observar en tres frecuencias simultaneas, centradas en 250, 350 y 500 μm, y de un [[espectrómetro de transformada de Fourier]]. Todos los sensores son [[bolómetro]]s refrigerados a 0,3 K con ³He.
SPIRE dispone de una cámara fotométrica que puede observar en tres frecuencias simultaneas, centradas en 250, 350 y 500 μm, y de un [[espectrómetro de transformada de Fourier]]. Todos los sensores son [[bolómetro]]s refrigerados a 0,3 K con ³He.


La cámara puede observar en las tres bandas follersimultáneamente. Los detectores individuales de los sensores se alinean en una matriz hexagonal distribuida de tal forma que 10 de los detectores de cada uno de los 3 sensores se encuentran alineados. El sensor centrado en 500 μm dispone de 43 detectores, el centrado en 350 μm de 88 y el centrado en 250 μm de 139. El campo de visión es de 4 × 8 minutos de arco.
La cámara puede observar en las tres bandas simultáneamente. Los detectores individuales de los sensores se alinean en una matriz hexagonal distribuida de tal forma que 10 de los detectores de cada uno de los 3 sensores se encuentran alineados. El sensor centrado en 500 μm dispone de 43 detectores, el centrado en 350 μm de 88 y el centrado en 250 μm de 139. El campo de visión es de 4 × 8 minutos de arco.


El espectrómetro puede observar en dos bandas, 194-324 μm y 316-672 μm, con 37 y 19 detectores respectivamente. La resolución espectral se puede ajustar a valores entre 300 y 24000 km/s con una cobertura que puede ir de unos 2500 a 200000 km/s dependiendo del sensor, la frecuencia y la configuración.
El espectrómetro puede observar en dos bandas, 194-324 μm y 316-672 μm, con 37 y 19 detectores respectivamente. La resolución espectral se puede ajustar a valores entre 300 y 24000 km/s con una cobertura que puede ir de unos 2500 a 200000 km/s dependiendo del sensor, la frecuencia y la configuración.

Revisión del 14:59 28 oct 2009

Concepción artística sobre el Observatorio Espacial Herschel.

El Observatorio Espacial Herschel es una misión de la Agencia Espacial Europea. El lanzamiento se realizó el 14 de mayo de 2009 a bordo de un Ariane 5 junto con el observatorio Planck Surveyor, en previsión de que entren en órbita a 1,5 millones de km de la Tierra, en el segundo de los puntos de Lagrange del sistema Tierra-Sol.[1]

La misión era denominada anteriormente Far Infrared and Submilimetre Telescope (FIRST), y será el primer observatorio espacial en cubrir completamente el infrarrojo lejano y longitudes de onda submilimétricas, y su telescopio tendrá el mayor espejo desplegado nunca en el espacio (3,5 m). Este observatorio estará especializado en la observación de objetos distantes, poco conocidos. Para el correcto funcionamiento de los instrumentos se deben mantener refrigerados por debajo de los 2 K (-271 °C)

El observatorio tiene aproximadamente 7 metros de longitud y pesará unas 3,25 t. La mayor parte del peso de la sonda será debido a los depósitos de helio usados para generar las temperaturas necesarias para los detectores de infrarrojos.

La misión fue nombrada en honor de William Herschel, descubridor del espectro infrarrojo.

Objetivos

Los objetivos de la misión son:

Instrumentos

Dispone de los siguientes instrumentos:

  • Photodetector Array Camera and Spectrometer (PACS)
  • Spectral and Photometric Imaging REceiver (SPIRE)
  • Instrumental heterodino para el infrarrojo lejano (HIFI)

PACS y SPIRE permitirán observar a Herschel en seis "colores" diferentes dentro del infrarrojo lejano. Ambos instrumentos pueden funcionar como espectrómetros de baja resolución. HIFI es un detector heterodino de un solo pixel que funciona como espectrómetro de muy alta resolución.

Todos los instrumentos se encuentran refrigerados por Helio líquido superfluido. Algunas partes de los instrumentos PACS y SPIRE se refrigeran con ³He para conseguir temperaturas (0,3 K) cercanas al cero absoluto. Cada instrumento se enfría por separado según sea usado para ahorrar refrigerante.

Los instrumentos PACS y SPIRE pueden observar como cámaras en modo paralelo para conseguir un mayor número de "colores" simultáneamente. Este modo de observación es apropiado para escaneos de grandes áreas con un pequeño gasto adicional de refrigerante.

PACS

PACS se compone en realidad de dos instrumentos independientes: una cámara y un espectrómetro de campo integral. Ambos funcionan en la banda de 55 a 210 μm. Solo se puede usar uno de los dos instrumentos a un mismo tiempo.

La cámara se compone de dos sensores fotométricos multipixel. Puede observar en dos frecuencias simultáneamente, centrada la primera en 75 ó 110 μm y la segunda en 150 μm. El primer sensor tiene 64 × 32 pixeles y el segundo dispone de 32 × 16 pixeles. El campo de visión es de 1,75 × 3,5 minutos de arco y la resolución de la cámara es, para ambos sensores, superior a la determinada por el límite de difracción del telescopio con lo que se consigue la máxima resolución posible a estas frecuencias.

El espectrómetro de campo integral tiene un campo de visión de 47 × 47 segundos de arco muestreado por 5 × 5 pixeles en la dimensión espacial. La resolución espectral ve desde unos 75 a unos 300 km/s con una cobertura de unos 1500 km/s. También dispone de dos sensores, bolómetros en este caso, que permiten observar en dos bandas simultáneamente.

SPIRE

SPIRE dispone de una cámara fotométrica que puede observar en tres frecuencias simultaneas, centradas en 250, 350 y 500 μm, y de un espectrómetro de transformada de Fourier. Todos los sensores son bolómetros refrigerados a 0,3 K con ³He.

La cámara puede observar en las tres bandas simultáneamente. Los detectores individuales de los sensores se alinean en una matriz hexagonal distribuida de tal forma que 10 de los detectores de cada uno de los 3 sensores se encuentran alineados. El sensor centrado en 500 μm dispone de 43 detectores, el centrado en 350 μm de 88 y el centrado en 250 μm de 139. El campo de visión es de 4 × 8 minutos de arco.

El espectrómetro puede observar en dos bandas, 194-324 μm y 316-672 μm, con 37 y 19 detectores respectivamente. La resolución espectral se puede ajustar a valores entre 300 y 24000 km/s con una cobertura que puede ir de unos 2500 a 200000 km/s dependiendo del sensor, la frecuencia y la configuración.

HIFI

HIFI es un espectrómetro de muy alta resolución que sólo puede observar un punto. El instrumento dispone de 7 mezcladores del sistema heterodino que se corresponden con distintos rangos de frecuencia. Los 2 de frecuencias más altas, de 1410 GHz a 1910 GHz (157 a 213 μm) son mezcladores HEB (Hot Electron Bolometer; bolómetros de electrones calientes en español) y los 5 de frecuencias más bajas de 480 GHz a 1250 GHz (240 a 625 μm) son mezcladores SIS (Superconductor Isolator Superconductor; superconductor aislante superconductor en español). El ancho de banda de la observación espectral es de 2,4 ó 4 GHz dependiendo del tipo de mezclador. De esta manera se obtienen resoluciones espectrales máximas desde 0,02 hasta 0,6 km/s en coberturas desde 625 hasta 2500 km/s, dependiendo de la frecuencia.

El rango de frecuencias de HIFI es muy similar al de SPIRE. SPIRE, al ser un bolómetro multipixel es muy sensible a la radiación continua y esta adaptado para hacer imágenes, sin embargo no es apropiado, en general, para la observación de líneas espectrales. Aunque HIFI solo tiene un pixel con su sensibilidad y resolución espectral es muy apropiado para este tipo de observaciones.

Referencias

  1. Alicia Rivera (14 de mayo de 2009). «'Herschel' y 'Planck' inician su viaje por el espacio». El País. Consultado el 15 de mayo de 2009. 

Véase también

Otros observatorios del espectro infrarrojo:

Enlaces externos