Diferencia entre revisiones de «Geometría molecular»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 189.147.100.223 a la última edición de 189.169.244.119
Línea 158: Línea 158:
| <center>90<sup>o</sup></center>
| <center>90<sup>o</sup></center>
| <center>XeF<sub>4</sub></center>
| <center>XeF<sub>4</sub></center>
| <left>[[Archivo:AX4E2-3D-balls.png|50px]]</left>
| <center>[[Archivo:AX4E2-3D-balls.png|50px]]</center>
|}
|}



Revisión del 20:05 17 feb 2010

Geometría de la molécula de agua

La Geometría molecular o estructura molecular es la disposición tri-dimensional de los átomos que constituyen una molécula. Determina muchas de las propiedades de las moléculas, como son la reactividad, polaridad, fase, color, magnetismo, actividad biológica, etc.

Determinación de la geometría molecular

Las geometrías moleculares a temperaturas próximas al cero absoluto porque a temperaturas más altas las moléculas presentarán un movimiento rotacional considerable. En el estado sólido la geometría molecular puede ser medida por Difracción de rayos X. Las geometrías se pueden calcular por procedimientos mecánico cuánticos ab initio o por métodos semiempíricos de modelamiento molecular. Las moléculas grandes a menudo existen en múltiples conformaciones estables que difieren en su geometría molecular y están separadas por barreras altas en la superficie de energía potencial.

La posición de cada átomo se determina por la naturaleza de los enlaces químicos con los que se conecta a sus átomos vecinos. La geometría molecular puede describirse por las posiciones de estos átomos en el espacio, mencionando la longitud de enlace de dos átomos unidos, ángulo de enlace de tres átomos conectados y ángulo de torsión de tres enlaces consecutivos.

Geometria molecular

Dado que el movimiento de los átomos en una molécula está determinado por la mecánica cuántica, uno debe definir el "movimiento" de una manera cuántica.

Los movimientos cuánticos (externos) de traslación y rotación cambian fuertemente la geometría molecular. (En algún grado la rotación influye en la geometría por medio de la fuerza de Coriolis y la distorsión centrífuga, pero son despreciables en la presente discusión).

Un tercer tipo de movimiento es la vibración, un movimiento interno de los átomos en una molécula. Las vibraciones moleculares son armónicas (al menos en una primera aproximación), lo que significa que los átomos oscilan en torno a su posición de equilibrio, incluso a la temperatura del cero absoluto. En el cero absoluto todos los átomos están en su estado vibracional basal y muestran movimiento mecánico cuántico de punto cero, esto es, la función de onda de un modo vibracional simple no es un pico agudo, sino un exponencial de ancho finito. A temperaturas mayores, los modos vibracionales pueden ser excitados térmicamente (en un interpretación clásica, esto se expresa al enunciar que "las moléculas vibrarán más rápido"), pero siempre oscilan alrededor de una geometría reconocible para la molécula.

Para tener una comprensión más clara de la probabilidad de que la vibración de una molécula pueda ser térmicamente excitada, se inspecciona el factor de Boltzmann , donde es la energía de excitación del modo vibracional, es la constante de Boltzmann y es la temperatura absoluta. A 298K (25 °C), unos valores típicos del factor de Boltzmann son: ΔE = 500 cm-1 --> 0.089; ΔE = 1000 cm-1 --> 0.008; ΔE = 1500 cm-1 --> 7 10-4. Esto es, si la energía de excitación es 500 cm-1, aproximadamente el 9% de las moléculas están térmicamente excitadas a temperatura ambiente. La menor energía vibracional de excitación es el modo de flexión (aproximadamente 1600 cm-1). En consecuencia, a temperatura ambiente menos del 0,07% de todas las moléculas de una cantidad dada de agua vibrarán más rápido que en el cero absoluto. janeth guadalupe

Como se mencionó anteriormente, la rotación influye fuertemente sobre la geometría molecular. Pero, como movimiento mecánico cuántico, se excita a bajas temperaturas (comparada con la vibración). Desde un punto de vista clásico, puede decirse que más moléculas rotan más rápidamente a temperatura ambiente, esto es que tienen mayor velocidad angular y momentum angular. En lenguaje de mecánica cuántica: más "eigenstates" de alto momentum angular son poblados térmicamente al aumentar la temperatura. Las energías de excitación rotacionales típicas están en el orden de unos pocos cm-1.

Los resultados de muchos experimentos espectroscópicos están ensanchados porque involucran una media de varios estados rotacionales. Frecuentemente es difícil obtener las geometrías a partir de los espectros a altas temperaturas, porque el número de estados rotacionales rastreados en el experimento aumenta al incrementarse la temperatura. En consecuencia, muchas observaciones espectroscópicas sólo puede esperarse que conduzcan a geometrías moleculares confiables a temperaturas cercanas al cero absoluto.

Enlazamiento

Por definición, los átomos en las moléculas suelen estar unidos unos a otros con enlaces covalentes, que involucran a enlaces simples, dobles o triples, donde un "enlace" es un par de electrones compartidos (la otra forma de unión entre átomos se denomina enlace iónico e involucra a cationes (iones positivos), y aniones (iones negativos).

La geometría molecular puede ser especificada en términos de longitud de enlace, ángulo de enlace y ángulo torsional. La longitud de enlace está definida como la distancia media entre los centros de dos átomos enlazados en una moléculada dada. Un ángulo de enlace es el ángulo formado por tres átomos enlazados consecutivamente. Para cuatro átomos unidos consecutivamente en una cadena línea, el ángulo torsional es el ángulo entre el plano formado por los tres primeros átomos y el plano formado por los tres últimos átomos.

Isómeros

Los isómeros son tipos de moléculas que comparten la misma fórmula química, pero que tienen diferentes geometrías, resultando en propiedades muy distintas:

  • Una sustancia "pura" está compuesta de sólo un tipo de isómero de una molécula (todas tienen la misma estructura geométrica).
  • Los isómeros estructurales tienen la misma fórmula química, pero diferente ordenamiento físico, frecuentemente formando geometrías moleculares alternas con propiedades muy diferentes. Los átomos no están enlazados (conectados) en el mismo orden.
  • Los isómeros funcionales son una clase especial de isómeros estructurales, donde ciertos grupos de átomos exhiben un tipo especial de comportamiento, como es un éter o un alcohol.
  • La estereoisómeros pueden tener muchas propiedades físicoquímicas idénticas y, al mismo tiempo, actividad biológica muy diferente. Esto se debe a que poseen la quiralidad que es muy común en los sistemas vivientes. Una manifestación de esta quiralidad es su habilidad para hacer rotar la luz polarizada en direcciones diferentes.

La geometría molecular se representa en una pirámide en la cual en la punta inicial hay una molécula de oxígeno con carga negativa, quedando en las otras dos puntas dos moléculas de hidrógeno con carga positiva, que son separadas por un ángulo de 104.5º; el enlace que une los hidrógenos con el oxígeno se llama enlace covalente, y también existe un enlace que une a otra pirámide idéntica a la anteriormente nombrada... llamado enlace puente hidrógeno...

Tipos de estructura molecular

Pares de Electrones Computidos Pares de Electrones Solitarios Distribución Geometría Ángulo de Enlace Ideal Ejemplo Imagen
2
0
Lineal
Lineal
180o
BeCl2
3
0
Plana Trigonal
Plana Triangular
120o
BF3
2
1
Plana Trigonal
Angular
120o
SO2
4
0
Tetraédrica
Tetraédrica
109,47o (cos-1 (1/3))
CH4
3
1
Tetraédrica
Piramidal Trigonal
109,47o (cos-1 (1/3))
NH3 (107,5°)
2
2
Tetraédrica
Angular
109,47o (cos-1 (1/3))
H2O (104,5°)
5
0
Bipiramidal Trigonal
Bipiramidal Trigonal
90o, 120o
PCl5
4
1
Bipiramidal Trigonal
Tetraédrica Irregular (Balancín)
90o, 120o
SF4
3
2
Bipiramidal Trigonal
Forma de T
90o
ClF3
2
3
Bipiramidal Trigonal
Lineal
180o
XeF2
6
0
Octaédrica
Octaédrica
90o
SF6
5
1
Octaédrica
Piramidal Cuadrangular
90o
BrF5
4
2
Octaédrica
Plana Cuadrada
90o
XeF4

Referencias