Arco de meridiano

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En geodesia, la medición de un arco de meridiano es una determinación muy precisa de la distancia entre dos puntos con la misma longitud. Hay que hacer dos o más determinaciones de este tipo en diferentes lugares para, a continuación poder especificar la forma del elipsoide de referencia que mejor se aproxima a la forma del geoide.[1] Este proceso se denomina determinación de la forma de la Tierra .[2] [3] Las primeras determinaciones del tamaño de una tierra esférica requerían un solo arco. Las determinaciones más recientes utilizan mediciones astro-geodésicas y métodos de geodesia por satélite para determinar el elipsoide de referencia.[4]

Aproximaciones[editar]

La distancia polar se puede aproximar por la fórmula de Thomas Muir:

m_p=\int_0^{\pi/2}\!M(\varphi)\,d\varphi\;\approx\frac\pi2\left[\frac{a^{3/2}+b^{3/2}}{2}\right]^{2/3}\,\!.

Friedrich Robert Helmert utilizó la siguiente fórmula en 1880[5] , poniendo n=\frac{1-\sqrt{1-e^2}}{1+\sqrt{1-e^2}}\simeq\frac{e^2}{4} :

\begin{align}B\approx 
  &\;\frac{a}{1+n}\left\{\left(1+\frac{n^2}{4}+\frac{n^4}{64}\right)\varphi-\frac{3}{2}\left(n-\frac{n^3}{8}\right)\sin 2\varphi\right. \\
  &\ \left.+\frac{15}{16}\left(n^2-\frac{n^4}{4}\right)\sin 4\varphi-\frac{35}{48}n^3\sin 6\varphi+\frac{315}{512}n^4\sin 8\varphi\right\}.\\ 
\end{align}

Véase también[editar]

Referencias[editar]

  1. (en inglés) An Introduction To The Stokes-Helmert’s Method For Precise Geoid Determination
  2. Sir Isaac Newton (1729). Isaac Newton: The mathematical principles of natural philosophy- Principia Book III, Proposition XIX Problem III. Benjamin Motte. pp. 239–. Consultado el 12 de agosto de 2012. 
  3. Isaac Newton: Principia Book III Proposition XIX Problem III, p. 407, on line - archive.org Principia Book III Proposition XIX Problem III
  4. Jean Baptiste Joseph Delambre; Adrien Marie Legendre (1799). Méthodes analytiques pour la détermination d'un arc du méridien. Crapelet. pp. 72–. 
  5. (en alemán) Helmert, F. R. (1880): Die mathematischen und physikalischen Theorieen der höheren Geodäsie, Einleitung und 1 Teil, Druck und Verlag von B. G. Teubner, Leipzig, 44–48