Sistema octal

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

El sistema numérico en base 8 se llama octal y utiliza los dígitos 0 a 7.

Para convertir un número en base decimal a base octal se divide dicho número entre 8, dejando el residuo y dividiendo el cociente sucesivamente hasta obtener cociente 0, y los restos de las divisiones en orden inverso indican el número en octal. Para pasar de base 8 a base decimal, solo hay que multiplicar cada cifra por 8 elevado a la posición de la cifra, y sumar el resultado.

Es más fácil pasar de binario a octal, porque solo hay que agrupar de 3 en 3 los dígitos binarios, así, el número 74 (en decimal) es 1001010 (en binario), lo agruparíamos como 1 / 001 / 010, después obtenemos el número en decimal de cada uno de los números en binario obtenidos: 1=1, 001=1 y 010=2. De modo que el número decimal 74 en octal es 112.

En informática a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Sin embargo, para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal, por cuanto todo byte así definido es completamente representable por dos dígitos hexadecimales.

Sistema de numeración octal[editar]

El sistema de numeración octal es un sistema de numeración en base 8, una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal.

El teorema fundamental aplicado al sistema octal sería el siguiente:

\begin{matrix} \!\!\!\!\!\!N=d_n \ldots d_1 d_0,  d_{-1} \ldots  d_{-k}& =&\\& \\
d_n\cdot 8^n+\ldots+d_1\cdot 8^1+d_0\cdot 8^0 , +d_{-1}\cdot 8^{-1}+\ldots+d_{-k}\cdot8^{-k}& =&
\end{matrix}



N=\sum_{i=-k}^n d_i\cdot 8^i

Como el sistema de numeración octal usa la notación posicional entonces para el número 3452,32 tenemos que: 2*80 + 5*81 + 4*82 + 3*83 + 3*8-1 + 2*8-2 = 2 + 40 + 4*64 + 3*512 + 3*0,125 + 2*0,015625 = 2 + 40 + 256 + 1536 + 0,375 + 0,03125 = 1834 + 0,40625d

Entonces, 3452,32q = 1834,40625d

El sub índice "q" indica número octal, se usa la letra q para evitar confusión entre la letra 'o' y el número 0. En informática, a veces se utiliza la numeración octal en vez de la hexadecimal. Tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos. Es posible que la numeración octal se usara en el pasado en lugar de la decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares.

Es utilizado como una forma abreviada de representar números binarios que emplean caracteres de seis bits. Cada tres bits (medio carácter) es convertido en un único dígito octal (del griego oktō 'ocho') Esto es muy importante por eso.

Fracciones[editar]

La numeración octal es tan buena como la binaria y la hexadecimal para operar con fracciones, puesto que el único factor primo para sus bases es 2. Todas las fracciones que tengan un denominador distinto de una potencia de 2 tendrán un desarrollo octal periódico.

Fracción Octal Resultado en octal
1/2 1/2 0,4
1/3 1/3 0,25252525 periódico
1/4 1/4 0,2
1/5 1/5 0,14631463 periódico
1/6 1/6 0,125252525 periódico
1/7 1/7 0,111111 periódico
1/8 1/10 0,1
1/9 1/11 0,07070707 periódico
1/10 1/12 0,063146314 periódico

Tabla de conversión entre decimal, binario, hexadecimal y octal[editar]

Decimal Binario Hexadecimal octal
0 00000 0 0
1 00001 1 1
2 00010 2 2
3 00011 3 3
4 00100 4 4
5 00101 5 5
6 00110 6 6
7 00111 7 7
8 01000 8 10
9 01001 9 11
10 01010 A 12
11 01011 B 13
12 01100 C 14
13 01101 D 15
14 01110 E 16
15 01111 F 17
16 10000 10 20
17 10001 11 21
18 10010 12 22
19 10011 13 23
20 10100 14 24
21 10101 15 25
22 10110 16 26
23 10111 17 27
30 11110 1E 36
31 11111 1F 37
32 100000 20 40
33 100001 21 41

Véase también[editar]

Enlaces externos[editar]