Regulador de tensión

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Regulador de tensión
TO-220 Package Four Different Projections.jpg
Reguladores de tensión L7805 y LM317T
Tipo Semiconductor
Fecha de invención Fairchild Semiconductor (1968)[1]
Símbolo electrónico
Voltage Regulator.svg
Configuración Entrada, tierra/ajuste y salida

Un regulador de tensión o regulador de voltaje es un dispositivo electrónico diseñado para mantener un nivel de voltaje constante.[2] [3]

Los reguladores electrónicos de tensión se encuentran en dispositivos como las fuentes de alimentación de los computadores, donde estabilizan los voltajes DC usados por el procesador y otros elementos. En los alternadores de los automóviles y en las plantas generadoras, los reguladores de voltaje controlan la salida de la planta. En un sistema de distribución de energía eléctrica, los reguladores de voltaje pueden instalarse en una subestación o junto con las líneas de distribución de forma que todos los consumidores reciban un voltaje constante independientemente de que tanta potencia exista en la línea.

Medición de la calidad de regulación[editar]

Para que el voltaje de salida siempre se mantenga constante, la regulación se especifica por dos medidas:

  • Regulación de carga es el cambio en el voltaje de salida para un cambio dado en la corriente de carga (Por ejemplo: "típicamente 15 mV, máximo 100 mV para corrientes de carga entre 5 mA y 1,4 A, en alguna temperatura específica y voltaje de entrada")
  • Regulación de línea o regulación de entrada es el grado al cual el voltaje de entrada cambia con el voltaje de salida. Es decir, como una relación del cambio entre voltaje de entrada y de salida (por ejemplo, "Típicamente 13 V/V"), o el cambio de voltaje de salida sobre el rango de voltaje de entrada especificado ( por ejemplo "más o menos el 2 % del voltaje de entrada entre 90 V y 260 V, 50-60 Hz").

Otros parámetros importantes son:

  • Coeficiente de temperatura: del voltaje de salida es el cambio en el voltaje de salida con la temperatura (probablemente un promedio dentro de un rango de temperatura).
  • Precisión del voltaje de un regulador de voltaje refleja el error en el voltaje de salida sin tomar en cuenta la temperatura o el tiempo de funcionamiento del mismo.
  • Voltaje de caída es la diferencia mínima entre el voltaje de entrada y el voltaje de salida para el cual el regulador puede aún suministrar la corriente especificada. Un regulador de baja caída está diseñado para trabajar bien incluso con una alimentación de entrada de solamente un voltio o menor al voltaje de salida. La diferencia de entrada-salida en el que el regulador de voltaje no mantendrá la regulación es el voltaje de caída. Mayor reducción en el voltaje de entrada producirá un voltaje de salida reducido. Este valor depende de la corriente de carga y de la temperatura máxima.
  • Valores máximos permitidos están definidos para los componentes del regulador, y especifican las corrientes de salida pico que pueden usarse, el voltaje máximo de entrada, la disipación máxima de potencia dada una temperatura, etc.
  • Ruido de salida (ruido blanco térmico) e impedancia dinámica de salida puede definirse en un gráfico en contra de la frecuencia, mientras que el rizo de salida puede darse como voltaje pico a pico o voltaje RMS, o en términos de su espectro.
  • Corriente de consumo es la corriente que pasa internamente por el circuito que no se va para la carga, medido normalmente como la corriente de entrada cuando no hay una carga conectada. Es además un signo de eficiencia, algunos reguladores lineales son más eficientes con cargas de corriente baja que las fuentes conmutadas.
  • Respuesta transitoria es la reacción del regulador cuando hay un cambio súbito de la corriente de carga (carga transitoria) o en el voltaje de entrada (línea transitoria). Algunos reguladores tienden a oscilar o al tener una respuesta lenta de tiempo que en muchos casos puede tener resultados no deseados. Este valor es diferente de los parámetros de regulación, ya que estos hablan del regulador en un estado estable. La respuesta transitoria muestra el comportamiento del regulador frente a un cambio. Esta información se provee en la documentación técnica de un regulador y también depende de la capacitancia de salida.
  • Protección de inserción de espejo de imagen significa que los reguladores están diseñados para su uso cuando hay un voltaje en su pin de salida y la corriente AC está desconectada. Reguladores con está protección pueden tolerar la entrada que está aterrizada y la salida estar a un potencial mucho más alto que la entrada, pero no mucho más alto el voltaje de entrada máximo permitido en el regulador. Sólo algunos reguladores pueden soportar este estado continuamente, otros podrían hacerlo por un minuto. Esta situación es similar a los reguladores de tres terminales que se montan como una imagen de espejo. Los reguladores de tres terminales cuando se montan incorrectamente en un PCB tiene una terminal de salida conectado a una entrada de corriente continua no regulada y la entrada está conectada a la carga. Además, este tipo de protección es importante cuando el circuito regulador es usado en circuito de carga para baterías. Un regulador sin este tipo de protección puede dañarse si hay un daño en la red eléctrica o no está encendido. En esta situación el voltaje de entrada es cero, mientras que la terminal de salida está en las terminales de la batería.

Un regulador simple puede hacerse de una resistencia en serie con un diodo (o serie de diodos). Debido a la curva característica del diodo, el voltaje a través del diodo cambia ligeramente debido a la corriente que pasa por el. Cuando la precisión en el voltaje no es necesario, el diseño puede funcionar.

Los reguladores de voltaje retroalimentados operan al comparar el voltaje de salida actual con algún voltaje de referencia asignado. Cualquier diferencia es amplificada y usada para controlar el elemento de regulación para reducir el voltaje de error. esto forma un lazo de control de realimentación negativa, haciendo que la ganancia tienda a incrementar la precisión de regulación pero reducir la estabilidad (se debe evitar la oscilación, durante los cambios de paso). También habrá una compensación entre la estabilidad y la velocidad de respuesta a los cambios.

Reguladores integrados[editar]

Hoy en día es más común encontrar en las fuentes de alimentación reguladores integrados, normalmente son componentes muy parecidos a los transistores de potencia, suelen tener tres terminales, uno de entrada, un común o masa, y uno de salida, tienen una capacidad de reducción del rizado muy alta y normalmente sólo hay que conectarles un par de condensadores. Existen circuitos reguladores con un gran abanico de tensiones y corrientes de funcionamiento. La serie más conocida de reguladores integrados es la 78xx y la serie 79xx para tensiones negativas. Los de mayor potencia necesitarán un disipador de calor, este es el principal problema de los reguladores serie lineales tanto discretos como integrados, al estar en serie con la carga las caídas de tensión en sus componentes provocan grandes disipaciones de potencia. Normalmente estos reguladores no son buenos para aplicaciones de audio por el ruido que pueden introducir en preamplificadores. Para ello es mejor utilizar regulación con componentes discretos o reguladores tipo LDO de bajo ruido.

Reguladores conmutados[editar]

Los reguladores conmutados solucionan los problemas de los dispositivos anteriormente citados, poseen mayor rendimiento de conversión, ya que los transistores funcionan en conmutación, reduciendo así la potencia disipada en estos y el tamaño de los disipadores. Se pueden encontrar este tipo de fuentes en los ordenadores personales, en electrodomésticos, reproductores DVD, etc, una desventaja es la producción de ruido electromagnético producido por la conmutación a frecuencias elevadas, teniendo que apantallar y diseñar correctamente la PCB (Placa de Circuito Impreso) del convertidor.

Reguladores electromecánicos[editar]

Los reguladores electromecánicos basan su principio de funcionamiento en un auto transformador de columna, sobre la cual se dispone un cursor accionado por un servomotor, que en su recorrido suma o resta espiras. Este movimiento de auto ajuste es controlado por un comando electrónico, que se activa cada vez que la tensión de salida se desvía de su valor de calibración, ajustándose automáticamente y con ello mantiene permanentemente la tensión de salida estable, la respuesta es lenta a las variaciones rápidas de tensión. Las ventajas que ofrece este principio son que cuenta con una alta precisión (1,5 %) y eficiencia del 99 %, teniendo capacidad de sobrecarga de hasta 500 % sin generación de contenido armónico, sin embargo aunque no genera ruido armónico tampoco lo elimina. Su vida útil es mayor a 25 años en funcionamiento continuo a plena carga por su diseño y robustez.

Regulador de voltaje de corriente alterna por Inducción[editar]

Este es un tipo antiguo de regulador usado en 1920 que usa el principio de una espira en una posición fija y una espira secundaria que puede rotarse en un eje en paralelo con la espira fija. [2]

Cuando la espira movible se posiciona perpendicular a la espira fija, las fuerzas mágneticas que actúan sobre la espira movible balancea entre sí y el voltaje de salida no cambia. Al rotar la espira en una dirección o alejarla de la posición central incrementará o reducirá el voltaje en la espira secundaria movible.

Este tipo de regulador puede automatizarse por medio de un mecanismo servo controlado para cambiar la posición de la espira movible logrando así que el voltaje se incremente o disminuya. Un mecanismo de frenado se usa para mantener a la espira movible en la posición que queda en contra de las fuerzas mágneticas que actúan en la espira.

Regulador ferroresonante[editar]

Los reguladores ferroresonantes. La ferroresonancia es la propiedad del diseño de un transformador en el cual el transformador contiene dos patrones magnéticos separados con acoplamiento limitado entre ellos. La salida contiene un circuito resonante paralelo que toma su potencia del primario para reemplazar la potencia entregada a la carga. Hay que notar que la resonancia en la ferroresonancia es similar a aquella en los circuitos lineales con condensadores o inductores en serie o paralelo, en donde la impedancia tiene un pico a una frecuencia en particular. En un circuito no lineal, como el que se usa en los transformadores ferroresonantes, la resonancia se usa para reducir los cambios en el voltaje de alimentación para suministrar un voltaje más constante a la carga.

Ejemplos de regulación[editar]

Regulador Zener[editar]

Circuito regulador Diodo Zener.

Es el regulador de tensión más sencillo. Consiste en una resistencia serie de entrada y el diodo zener en paralelo con la carga como se muestra en la siguiente imagen.

Cuando la tensión de entrada aumenta se produce un aumento de la corriente de entrada, como la tensión del diodo zener es constante, absorbe el exceso de corriente, mientras la resistencia de entrada absorbe esta variación de tensión. Si se produce una disminución de la tensión de entrada la caída de tensión en la resistencia de entrada disminuirá, compensando la disminución inicial, por el zener circulará menor corriente.

Del circuito se deduce que para que el zener estabilice correctamente, la tensión mínima a su entrada (UIN), debe ser mayor que la tensión de referencia del zener (Vz). También hay un límite de tensión máxima debida a las limitaciones de potencia del dispositivo. Si se cumplen estas premisas, la tensión en la carga será muy aproximada igual a la del zener.

Las ecuaciones básicas del circuito son las siguientes:

Vin = Vr + Vz

Donde Vin es la tensión de entrada, Vr la tensión en la resistencia serie y Vz la tensión del zener o de la resistencia de carga.

Ie = Iz + Is

Donde Ie es la corriente de entrada, Iz la corriente por el zener e Is la corriente por la carga.

Regulador transistor[editar]

Diagrama de un circuito regulador transitor.

Este tipo de regulador utiliza un transistor en serie con la carga, como puede observarse en el esquema.

En este circuito la corriente de entrada sigue los cambios de la corriente por la carga, sin embargo, en el regulador paralelo la corriente por la carga se mantenía constante. Al haber sustituido la resistencia serie por un transistor, este regulador tiene un mayor rendimiento que el anteriormente visto, por lo que se utiliza en circuitos de mayor potencia. Si se produce una baja en el valor de la resistencia de carga, la corriente de entrada al circuito estabilizador aumenta, también aumenta la corriente por la resistencia Rv, como el diodo zener mantiene su tensión constante, aumenta la caída de tensión en Rv, con lo que la tensión colector-base del transistor aumenta, volviéndose menos conductivo, y estabilizando el aumento inicial de corriente.

Véase también[editar]

Referencia[editar]

Enlaces externos[editar]