Número cabtaxi

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

Número cabtaxi, en matemáticas, el n número cabtaxi, a menudo llamado y notado Cabtaxi(n), es definido como el más pequeño entero que se puede escribir en n maneras o modos diferentes (en un orden de términos aproximados) como suma de dos cubos positivos, nulos o negativos. Los números cabtaxi existen para todo n ≥ 1 (ya que que el en está igualmente para los números taxicab); Hasta abril de 2014 se conocen 10 números cabtaxi:

\begin{matrix}\mathrm{Cabtaxi}(1)&=&1&=&1^3 + 0^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(2)&=&91&=&3^3 + 4^3 \\&&&=&6^3 - 5^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(3)&=&728&=&6^3 + 8^3 \\&&&=&9^3 - 1^3 \\&&&=&12^3 - 10^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(4)&=&2741256&=&108^3 + 114^3 \\&&&=&140^3 - 14^3 \\&&&=&168^3 - 126^3 \\&&&=&207^3 - 183^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(5)&=&6017193&=&166^3 + 113^3 \\&&&=&180^3 + 57^3 \\&&&=&185^3 - 68^3 \\&&&=&209^3 - 146^3 \\&&&=&246^3 - 207^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(6)&=&1412774811&=&963^3 + 804^3 \\&&&=&1134^3 - 357^3 \\&&&=&1155^3 - 504^3 \\&&&=&1246^3 - 805^3 \\&&&=&2115^3 - 2004^3 \\&&&=&4746^3 - 4725^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(7)&=&11302198488&=&1926^3 + 1608^3 \\&&&=&1939^3 + 1589^3 \\&&&=&2268^3 - 714^3 \\&&&=&2310^3 - 1008^3 \\&&&=&2492^3 - 1610^3 \\&&&=&4230^3 - 4008^3 \\&&&=&9492^3 - 9450^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(8)&=&137513849003496&=&22944^3 + 50058^3 \\&&&=&36547^3 + 44597^3 \\&&&=&36984^3 + 44298^3 \\&&&=&52164^3 - 16422^3 \\&&&=&53130^3 - 23184^3 \\&&&=&57316^3 - 37030^3 \\&&&=&97290^3 - 92184^3 \\&&&=&218316^3 - 217350^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(9)&=&424910390480793000&=&645210^3 +  538680^3 \\&&&=&649565^3 +  532315^3 \\&&&=&752409^3 -  101409^3 \\&&&=&759780^3 -  239190^3 \\&&&=&773850^3 -  337680^3 \\&&&=&834820^3 -  539350^3 \\&&&=&1417050^3 - 1342680^3 \\&&&=&3179820^3 - 3165750^3 \\&&&=&5960010^3 - 5956020^3\end{matrix}
\begin{matrix}\mathrm{Cabtaxi}(10)&=&933528127886302221000&=&77480130^3 - 77428260^3 \\&&&=&41337660^3 - 41154750^3 \\&&&=&18421650^3 - 17454840^3 \\&&&=&10852660^3 - 7011550^3 \\&&&=&10060050^3 - 4389840^3 \\&&&=&9877140^3 - 3109470^3 \\&&&=&9781317^3 - 1318317^3 \\&&&=&9773330^3 - 84560^3 \\&&&=&8444345^3 + 6920095^3 \\&&&=&8387730^3 + 7002840^3\end{matrix}

O en un gráfico más claro:

n Ca(n) a^3+b^3 Descubridor
1 1 1,0
2 91 3,4
6,-5
3 728 6,8
9,-1
12,-10
4 2741256 2421,19083
140,-14
168,-126
207,-183
5 6017193 166,113
180,57
185,-68
209,-146
246,-207
Randall L. Rathbun
6 1412774811 963,804
1134,-357
1155,-504
1246,-805
2115,-2004
4746,-4725
Randall L. Rathbun
7 11302198488 1926,1608
1939,1589
2268,-714
2310,-1008
2492,-1610
4230,- 4008
9492,-9450
Randall L. Rathbun
8 137513849003496 22944,50058
36547,44597
36984,44298
52164,-16422
53130,-23184
57316,-37030
97290,-92184
218316,-217350
Daniel J. Bernstein
9 424910390480793000 645210,538680
649565,532315
752409,-101409
759780,-239190
773850,-337680
834820,-539350
1417050,-1342680
3179820,-3165750
5960010,-5956020
Duncan Moore

Los números Cabtaxi(5), Cabtaxi(6) y Cabtaxi(7) han sido hallados por Randall L. Rathbun; y el Cabtaxi(8) por Daniel J. Bernstein, quien ha demostrado que Cabtaxi(9) ≥ 1019, mientras que Duncan Moore en el 2005 halló los números que corresponderían a Cabtaxi (9).


Véase también[editar]

Enlaces externos[editar]