Número taxicab

De Wikipedia, la enciclopedia libre
(Redirigido desde «Número Taxicab»)
Saltar a: navegación, búsqueda

Se dice que un número es el enésimo número taxicab si es el menor número que se puede descomponer como n sumas distintas de dos cubos positivos. El nombre de estos números proviene de una anécdota entre los matemáticos G. H. Hardy y S. A. Ramanujan (ver número de Hardy-Ramanujan).

Los números taxicab conocidos son los siguientes:

\operatorname{Ta}(1) = 2 = 1^3 + 1^3
\begin{matrix}\operatorname{Ta}(2)&=&1729&=&1^3 + 12^3 \\&&&=&9^3 + 10^3\end{matrix}
\begin{matrix}\operatorname{Ta}(3)&=&87539319&=&167^3 + 436^3 \\&&&=&228^3 + 423^3 \\&&&=&255^3 + 414^3\end{matrix}
\begin{matrix}\operatorname{Ta}(4)&=&6963472309248&=&2421^3 + 19083^3 \\&&&=&5436^3 + 18948^3 \\&&&=&10200^3 + 18072^3 \\&&&=&13322^3 + 16630^3\end{matrix}
\begin{matrix}\operatorname{Ta}(5)&=&48988659276962496&=&38787^3 + 365757^3 \\&&&=&107839^3 + 362753^3 \\&&&=&205292^3 + 342952^3 \\&&&=&221424^3 + 336588^3 \\&&&=&231518^3 + 331954^3\end{matrix}
\begin{matrix}\operatorname{Ta}(6)&=&24153319581254312065344&=&582162^3 + 28906206^3 \\&&&=&3064173^3 + 28894803^3 \\&&&=&8519281^3 + 28657487^3 \\&&&=&16218068^3 + 27093208^3 \\&&&=&17492496^3 + 26590452^3 \\&&&=&18289922^3 + 26224366^3\end{matrix}

Además se conocen valores límite para los números Ta(7) a Ta(12), encontrados por Christian Boyer en 2006.

Véase también[editar]