Estrella variable Cefeida

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 17:20 10 ago 2020 por SeroBOT (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

Una variable cefeida es una estrella que pulsa radialmente, variando tanto en temperatura como diámetro para producir cambios de brillo con un periodo y amplitud estables muy regulares.

Una relación directa fuerte entre su luminosidad y periodo pulsar[1][2]​ aseguran para las Cefeidas su estado como importantes indicadores de distancia para establecer escalas de distancia galácticas y extragalácticas.[3][4][5][6]

El término Cefeida se origina de Delta Cephei en la constelación Cepheus, la primera estrella de este tipo identificada, por John Goodricke en 1784.

Características

Las cefeidas presentan modulaciones periódicas de luminosidad extremadamente regulares y, de las variables pulsantes, son las que presentan menores irregularidades en la duración del período de pulsación. Actualmente, se han observado más de 400 cefeidas en nuestra galaxia, en cúmulos globulares como M3, M13 (tres) o M92 (sólo una), y otras 1.000 se han identificado en las Nubes de Magallanes, dos galaxias muy próximas a la nuestra. Además, se han observado un número significativo de cefeidas en otras galaxias próximas (por ejemplo Andrómeda o M31, M101, etc).

Las modulaciones de luminosidad que presenta durante todo el ciclo suelen estar comprendidas entre un mínimo de 0,35 y un máximo de 1,5 magnitudes, lo que corresponde a un incremento de cuatro veces el flujo de luz.

Una de las características principales que permite distinguirlas de otras estrellas variables es que la amplitud de la curva de luz varía según la banda del espectro visual en la que se observa. En especial, las modulaciones aparecen más acusadas en longitudes de onda inferiores, típicamente en azul y en el ultravioleta más que en el rojo. Por lo que respecta a los períodos de las cefeidas, están comprendidos entre 0,2 y 100 días, aunque los valores están distribuidos de diferente manera en nuestra galaxia que en las Nubes de Magallanes. En la mayoría de los casos, las curvas de luz de las cefeidas se caracterizan por un perfil más bien asímétrico, con un rápido ascenso hacia la luminosidad máxima y un descenso más lento hacia la mínima.

La comparación entre las curvas de luz de diversas varíables cefeidas parece haber demostrado la existencia de una correlación sistemática entre la amplitud misma de la curva de luz y el valor del período de pulsación. Por otra parte, las cefeidas con un período más largo son también las que, genéricamente muestran variaciones de magnitud más sensibles.

Mecanismos de pulsación

La luminosidad de una estrella depende de su temperatura superficial y de las dimensiones de la superficie emisora. Las variaciones periódicas de su temperatura, pueden producir las modulaciones de luminosidad observadas. En el caso de las cefeidas, las variaciones de temperatura pueden tener lugar a consecuencia de una serie de contracciones y expansiones radiales de la propia estrella en torno a un valor medio del radio. El período de pulsación de una cefeida sería proporcional al valor medio del radio que, a su vez, depende intrínsecamente de las características de la propia estrella. Según este modelo, la contracción de la estrella produce un aumento de temperatura en las regiones centrales y, por consiguiente, del número de reacciones nucleares, lo cual, a su vez, provoca un aumento global de la luminosidad. Luego, el aumento de energía liberada tiende a detener la contracción de la estrella y a producir una dilatación de las capas más externas. Después de la expansión, la estrella se enfría, con la consiguiente disminución de su luminosidad. Alcanzada cierta temperatura mínima, la expansión se detiene y el radio de la estrella se ajusta en torno a una posición de equilibrio. Así, pues, la luminosidad de una variable cefeida es inversamente proporcional a sus dimensiones, lo que significa que es máxima cuando el radio es mínimo, y viceversa.

Cefeidas como indicadores de distancia

Existe una relación, llamada ley período-luminosidad, que vincula directamente la magnitud absoluta de una estrella cefeida, calculada en el máximo de su curva, con el valor de su período de pulsación. El aumento de la luminosidad de las cefeidas en función del período, tomado de la relación período-luminosidad, es compatible con la teoría de la pulsación estelar según la cual la luminosidad depende del radio y, a su vez, este último es proporcional al período. La consecuencia más importante de la relación período-luminosidad es que proporciona un método razonablemente seguro para evaluar la magnitud absoluta de una cefeida. Una vez conocida ésta, es posible conocer la distancia calculando la diferencia respecto a la magnitud aparente ([[Magnitud absoluta - Observatoire de Paris módulo (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última). de distancia]]). Por este motivo, las cefeidas tienen también el importante papel de indicadores de distancia. Como tales, su importancia en astronomía para la medida de las distancias extragalácticas es enorme. Por ejemplo, identificar una cefeida en una galaxia distante y medir su período de pulsación permite conocer inmediatamente su distancia, y con ella, la de la galaxia misma. El descubrimiento de la utilidad de las cefeidas como indicadores de distancia se lo debemos a las observaciones de Henrietta Swan Leavitt, que trabajaba como voluntaria en el equipo del Observatorio del Harvard College, aunque sus superiores, Edward Pickering y Edwin Hubble, se llevaron inicialmente todo el mérito.

Clasificación de las cefeidas

Las cefeidas pueden dividirse en dos subclases. A la primera pertenecen las llamadas cefeidas clásicas: son estrellas de población I, es decir, estrellas muy jóvenes, con una edad de 100 millones de años aproximadamente, localizadas con preferencia en los brazos espirales de nuestra galaxia. Las cefeidas clásicas son supergigantes, con una masa equivalente a varias masas solares, y, son de 500 a 30.000 veces más brillantes que nuestro Sol, a pesar de que su temperatura superficial es poco más elevada (10.000 K). Su tamaño es considerablemente mayor.

La segunda clase es la de las cefeidas de tipo W Virginis, así llamadas por el nombre de la estrella prototipo (W Virginis). Se trata de estrellas más viejas y que, por tanto, pertenecen a la población II. A diferencia de la cefeidas, se encuentran en el núcleo y en el halo de nuestra galaxia, especialmente en el interior de los cúmulos globulares. Las W Virginis tienen también períodos de pulsación más breves respecto a las cefeidas clásicas, generalmente inferiores a 18 días, e, intrínsecamente, son menos luminosas: aproximadamente un par de magnitudes menos. Existe un subtipo: el de las cefeidas de tipo BL Herculis, cuyos períodos de pulsación son menores de 10 días (ejemplos: V1, V2 y V6 en el cúmulo globular M13 o V7 en M92).

Cefeidas clásicas más brillantes

En la siguiente tabla se recogen las cefeidas clásicas más brillantes ordenadas de acuerdo a su magnitud aparente máxima.

Nombre Magnitud máxima Magnitud mínima Período (días) Tipo espectral
β Doradus 3,46 4,08 9,8426 F4-G4Ia-II
η Aquilae 3,48 4,39 7,176641 F6Ib-G4Ib
δ Cephei 3,48 4,37 5,366341 F5Ib-G1Ib
ζ Geminorum 3,62 4,18 10,15073 F7Ib-G3Ib
X Sagittarii 4,2 4,9 7,01283 F5-G2II
W Sagittarii 4,29 5,14 7,59503 F4-G2Ib
RT Aurigae 5 5,82 3,728115 F4Ib-G1Ib
S Sagittae 5,24 6,04 8,382086 F6Ib-G5Ib
Y Sagittarii 5,25 6,24 5,77335 F5-G0Ib-II
T Vulpeculae 5,41 6,09 4,435462 F5Ib-G0Ib
T Monocerotis 5,58 6,62 27,02465 F7Iab-K1Iab+A0V
AX Circini 5,65 6,09 5,273268 F2-G2II+B4
U Carinae 5,72 7,02 38,7681 F6-G7Iab
X Cygni 5,85 6,91 16,38633 F7Ib-G8Ib
S Muscae 5,89 6,49 9,66007 F6Ib-G0

Fuente: Cepheids of the δ-Cephei-type (Alcyone)

Referencias

  1. Udalski, A.; Soszynski, I.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K. (1999). «The Optical Gravitational Lensing Experiment. Cepheids in the Magellanic Clouds. IV. Catalog of Cepheids from the Large Magellanic Cloud». Acta Astronomica 49: 223. Bibcode:1999AcA....49..223U. arXiv:astro-ph/9908317. 
  2. Soszynski, I.; Poleski, R.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Wyrzykowski, L.; Szewczyk, O. et al. (2008). «The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. I. Classical Cepheids in the Large Magellanic Cloud». Acta Astronomica 58: 163. Bibcode:2008AcA....58..163S. arXiv:0808.2210. 
  3. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas freedman2001
  4. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas tammannsandage2008
  5. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas majaess2009
  6. Freedman, Wendy L.; Madore, Barry F. (2010). «The Hubble Constant». Annual Review of Astronomy and Astrophysics 48: 673. Bibcode:2010ARA&A..48..673F. arXiv:1004.1856. doi:10.1146/annurev-astro-082708-101829.