Diferencia entre revisiones de «Gen»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Camilo (discusión · contribs.)
m Revertidos los cambios de 189.189.117.1 a la última edición de Matdrodes
Línea 5: Línea 5:
Un '''gen''' es el conjunto de una secuencia determinada de [[nucleótidos]] de uno de los lados de la escalera del [[cromosoma]] referenciado. La secuencia puede llegar a formar proteínas, o serán inhibidas, dependiendo del programa asignado para la célula que aporte los cromosomas.<ref>Investigación y ciencia. Temas 38: La nueva genética. Pag. 46. Los peligros del dogmatismo. Por W. Wayt Gibbs<small>(adaptación para wikipedia)</small></ref>
Un '''gen''' es el conjunto de una secuencia determinada de [[nucleótidos]] de uno de los lados de la escalera del [[cromosoma]] referenciado. La secuencia puede llegar a formar proteínas, o serán inhibidas, dependiendo del programa asignado para la célula que aporte los cromosomas.<ref>Investigación y ciencia. Temas 38: La nueva genética. Pag. 46. Los peligros del dogmatismo. Por W. Wayt Gibbs<small>(adaptación para wikipedia)</small></ref>


== zoy karla ivett de la uni insurgentes holllaaaEntorno del programa genético<ref>Investigación y ciencia. Temas 38: La nueva genética. <small>adaptación para wikipedia</small></ref> ==
== Entorno del programa genético<ref>Investigación y ciencia. Temas 38: La nueva genética. <small>adaptación para wikipedia</small></ref> ==
Toda molécula tiende a degradar su estado de carga neutra, siendo el momento de manifestar la carga cuando la degradación se manifiesta en la pérdida de un electrón o en su ganancia. En esto interactúan los factores externos e internos de la molécula con el medio.
Toda molécula tiende a degradar su estado de carga neutra, siendo el momento de manifestar la carga cuando la degradación se manifiesta en la pérdida de un electrón o en su ganancia. En esto interactúan los factores externos e internos de la molécula con el medio.
Dado el caso de dos moléculas con carga idéntica y opuesta, tendrán la tendencia a neutralizar la carga formando enlaces químicos. Dichos enlaces pueden ser [[iónico]]s o [[covalente]]s. La tendencia más favorable se la denomina 'Gancho' (hook en inglés), y es la equivalente en nuestras dimensiones a la tendencia de ciertas semillas naturales a engancharse al pelo de los animales o incluso a nuestros calcetines.
Dado el caso de dos moléculas con carga idéntica y opuesta, tendrán la tendencia a neutralizar la carga formando enlaces químicos. Dichos enlaces pueden ser [[iónico]]s o [[covalente]]s. La tendencia más favorable se la denomina 'Gancho' (hook en inglés), y es la equivalente en nuestras dimensiones a la tendencia de ciertas semillas naturales a engancharse al pelo de los animales o incluso a nuestros calcetines.

Revisión del 23:13 26 may 2009

Este diagrama esquemático muestra un gen corto, dentro de la estructura en doble hélice de ADN que al comprimirse va formando un cromosoma (derecha). Se trata de un gen eucariota (el procariota carece de intron). Las proteinas se codifican sólo en el exon. La mayoría de los genes son cientos de veces más largos que este breve gen de 41 bases

Un gen es el conjunto de una secuencia determinada de nucleótidos de uno de los lados de la escalera del cromosoma referenciado. La secuencia puede llegar a formar proteínas, o serán inhibidas, dependiendo del programa asignado para la célula que aporte los cromosomas.[1]

Entorno del programa genético[2]

Toda molécula tiende a degradar su estado de carga neutra, siendo el momento de manifestar la carga cuando la degradación se manifiesta en la pérdida de un electrón o en su ganancia. En esto interactúan los factores externos e internos de la molécula con el medio. Dado el caso de dos moléculas con carga idéntica y opuesta, tendrán la tendencia a neutralizar la carga formando enlaces químicos. Dichos enlaces pueden ser iónicos o covalentes. La tendencia más favorable se la denomina 'Gancho' (hook en inglés), y es la equivalente en nuestras dimensiones a la tendencia de ciertas semillas naturales a engancharse al pelo de los animales o incluso a nuestros calcetines.

La dinámica entre el ejemplo y la dimensión molecular es paralela, en los siguientes casos: No existe premeditación en la colocación de la semilla ni el lugar que ocupe la molécula en un momento dado de tiempo. No es evidente en la naturaleza un Ego intencional que determine a la semilla si acaba o no enganchada en el pelo del animal; al igual que tampoco hay razón para pensar de forma similar en el caso de dos moléculas, que coincidiendo en el espacio, tengan por estadística una probabilidad casi cierta de acabar enlazadas.

Bajo estas premisas, b y c se puede decir que funciona el programa genético. Un proceso totalmente autónomo promovido por la dinámica de la energía, del medio, de las propiedades inherentes a cada objeto cuya descripción establece la física. Los cálculos físico-químicos ofrecen un planteamiento estadístico de previsiones en los resultados más favorables, determinados por la menor resistencia a la hora de expresar sus propiedades. Este determinismo resulta imponderable por los cálculos físicos. En conclusión, la expresión del programa genético es consecuencia del bien conocido Efecto mariposa.

Dentro de lo que es el programa genético, se puede afirmar que es la memoria de cómo en un pasado las especies estuvieron adaptadas a un medio distinto al actual, pudiendo suponer que las especies pasadas estaban mejor adaptadas que las actuales y entendiendo que los procesos de extinción de las especies son, por tanto, una expresión más de la selección natural.

La entropía asociada a la tendencia a la desorganización de la información hace aún más evidente este hecho.

Las proteínas fibrosas y globulares son heteroproteínas que consisten en capas.

A pesar de que se conocen de manera básica más de 3000 moléculas proteínicas distintas, solamente se han podido estudiar detalladamente la estructura de algunas porciones que son fundamentales en la biología celular.

Punto de vista molecular

Un gen es una secuencia lineal de nucleótidos en la molécula de ADN (o ARN en el caso de algunos virus), que contiene la información necesaria para la síntesis de una macromolécula con función celular específica. Por ejemplo: Proteínas, ARNm, ARN ribosómico, ARN de transferencia y ARN pequeños. Esta función puede estar vinculada al desarrollo o funcionamiento de una función fisiológica normal. El gen es considerado como la unidad de almacenamiento de información y unidad de herencia al transmitir esa información a la descendencia. Los genes se disponen, pues, a lo largo de cada uno de los cromosomas. Cada gen ocupa en el cromosoma una posición determinada llamada locus. El conjunto de cromosomas de una especie se denomina genoma.

Algunas enfermedades como la anemia drepanocítica (o anemia falciforme) pueden ser ocasionadas por un cambio en un solo gen (uno de los 30.000 genes que constituyen el plan para todo el cuerpo humano).

Los organismos diploides (entre ellos, casi todos los animales y plantas) disponen de dos juegos de cromosomas homólogos, cada uno de ellos proveniente de uno de los padres. Cada par de cromosomas tiene, pues, un par de copias de cada gen, una procedente de la madre y otra del padre.

Los genes pueden aparecer en versiones diferentes, con variaciones pequeñas en su secuencia, y entonces se los denomina alelos ("otro", en griego). Los alelos pueden ser dominantes o recesivos. Cuando una sola copia del alelo hace que se manifieste el rasgo fenotípico, el alelo es dominante. Cuando son precisas dos copias del alelo (una en cada cromosoma del par), el alelo es recesivo.

Tipos de genes

Un gen es una secuencia o segmento de ADN necesario para la síntesis de ARN funcional, como el ARN de transferencia o el ARN ribosomal. Sin embargo, estos dos tipos de ARN no codifican proteínas, lo cual es hecho por el ARN mensajero. Para ello, la transcripción genera una molécula de ARN que posteriormente sufrirá traducción en los ribosomas, proceso por el cual se genera una proteína. Muchos genes se encuentran constituidos por regiones codificantes (exones) interrumpidas por regiones no codificantes (intrones) que son eliminadas en el procesamiento del ARN. En células procariontes esto no ocurre pues los genes de procariotas carecen de intrones. La secuencia de bases presente en el ARN determina la secuencia de aminoácidos de la proteína por medio del código genético.

Otros genes no son traducidos a proteína, sino que cumplen su función en forma de ARN. Entre éstos, encontramos genes de ARN transferente, ARN ribosómico, ribozimas y otros ARN pequeños de funciones diversas.

Algunos genes han sufrido procesos de mutación u otros fenómenos de reorganización y han dejado de ser funcionales, pero persisten en los genomas de los seres vivos. Al dejar de tener función, se denominan pseudogenes, y pueden ser muy parecidos a otros genes del mismo organismo que sean funcionales.

Estos aminoácidos contienen grupos neutros, es decir sin carga, por lo que pueden formar puentes de hidrógeno con el agua. A la glicina algunas veces se le clasifica como aminoácido no polar, debido a que el grupo R consiste en un simple átomo de hidrógeno, demasiado pequeño como para afectar la polaridad de los grupos alfa amino y alfa carboxilo. En los amino serina, treonina y ceronina, la polaridad se debe a la a la presencia de grupo carboxilo (-COOH) en el caso de la asparagina y de la glutamina.

Historia

El concepto de gen ha ido variando a lo largo del tiempo, conforme ha avanzado la ciencia que lo estudia, la genética:

  • Gregor Mendel en sus experimentos propuso la idea original del gen, aunque él no los denominó genes, sino factores, y vendrían a ser los responsables de la transmisión de los caracteres de padres a hijos (lo que ahora llamamos genotipo). El gen mendeliano es una unidad de función, estructura, transmisión, mutación y evolución que se distribuye ordenada y linealmente en los cromosomas.
  • La palabra gen fue acuñada en 1909 por el botánico danés Wilhelm Ludwig Johannsen a partir de una palabra griega que significa "generar", refiriéndose a la unidad física y funcional de la herencia biológica.
  • Hacia 1950, se impuso el concepto de gen como la cadena de ADN que dirige la síntesis de una proteína. Éste es un concepto que proporciona una naturaleza molecular o estructural al gen. El gen codifica proteínas y debe tener una estructura definida por el orden lineal de sus tripletes.
  • Más tarde surge el concepto de gen como “la cadena de ADN capaz de dirigir la síntesis de un polipéptido”. Este concepto surge al comprobar que la mayoría de las proteínas están formadas por más de una cadena polipeptídica y que cada una de ellas está codificada por un gen diferente.
  • Actualmente se sabe que algunos genes codifican más de un polipéptido y que una proteína puede ser codificada por el conjunto de diferentes genes. La existencia de genes solapantes y el procesamiento alternativo rebaten la hipótesis de un gen -> un polipéptido. Más bien debe proponerse la relación inversa, un polipéptido -> un gen. Además existen algunos genes que no codifican proteínas sino ARN con función propia (ARN transferentes y ARN ribosómicos, por ejemplo) y que no se traducen, por lo que no es necesaria la traducción para que un gen tenga una función determinada. El gen es, pues, la unidad mínima de función genética, que puede heredarse.

Número de genes en algunos organismos

Organismo Nº de genes pares de bases
Plantas <50000 <1011
Humanos 35000[3] 3 × 109
Mosca 12000 1,6 × 108
Hongo 6000 1,3 × 107
Bacteria 500-6000 5 × 105 - 107
Mycoplasma genitallium 500 580.000
Virus ADN 10-300 5.000 - 800.000
Virus RNA 1-25 1.000 - 23.000
Viroides 0-1 ~500
Prione 0 ;0

Referencias

  1. Investigación y ciencia. Temas 38: La nueva genética. Pag. 46. Los peligros del dogmatismo. Por W. Wayt Gibbs(adaptación para wikipedia)
  2. Investigación y ciencia. Temas 38: La nueva genética. adaptación para wikipedia
  3. Embriologia de Ladman (2004). «Finishing the euchromatic sequence of the human genome.». Nature 431 (7011): 931-45. PMID 15496913.  [1]

Bibliografía adicional

  • Nicolás Jouve de la Barreda. Explorando los genes. Del big-bang a la nueva Biología. Ediciones Encuentro. ISBN 978-84-7490-901-2.