Complemento a dos

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Complemento a dos Decimal
0111 7
0110 6
0101 5
0100 4
0011 3
0010 2
0001 1
0000 0
1111 −1
1110 −2
1101 −3
1100 −4
1011 −5
1010 −6
1001 −7

Complemento a dos con enteros de 4 bits

El complemento a dos de un número N que, expresado en el sistema binario está compuesto por n dígitos, se define como:

C_2^N=2^n - N.

El total de números positivos será 2^{n-1}-1 y el de negativos 2^{n-1}, siendo n el número máximo de bits. El 0 contaría aparte.

Veamos un ejemplo: tomemos el número N = 45 que, cuando se expresa en binario es N=101101_2, con 6 dígitos, y calculemos su complemento a dos:

Cabe señalar que en este ejemplo se ha limitado el número de bits a 6, por lo que no sería posible distinguir entre el -45 y el 19 (el 19 en binario es 10011). En realidad, un número en complemento a dos se expresa con una cantidad arbitraria de unos a la izquierda, de la misma manera que un número binario positivo se expresa con una cantidad arbitraria de ceros. Así, el -45, expresado en complemento a dos usando 8 bits sería 11010011, mientras que el 19 sería 00010011; y expresados en 16 bits serían 1111111111010011 y 0000000000010011 respectivamente. Se presenta la tabla de verdad del complemento a 2 para cuatro dígitos.

Cálculo del complemento a dos[editar]

El cálculo del complemento a dos es muy sencillo y muy fácil de realizar mediante puertas lógicas, donde reside su utilidad.

Para comenzar los números positivos se quedarán igual en su representación binaria. Los números negativos deberemos invertir el valor de cada una de sus cifras, es decir realizar el complemento a uno, y sumarle 1 al número obtenido. Podemos observar esto en la tabla de ejemplo.

Cabe recordar que debido a la utilización de un bit para representar el signo, el rango de valores será diferente al de una representación binaria habitual; el rango de valores decimales para «n» bits será:

 -2^{n-1} \le \ Rango \le \ 2^{n-1} -1

Conversión rápida[editar]

Una forma de hallar el opuesto de un número binario positivo en complemento a dos es comenzar por la derecha (el dígito menos significativo), copiando el número original (de derecha a izquierda) hasta encontrar el primer 1, después de haber copiado el 1, se niegan (complementan) los dígitos restantes (es decir, copia un 0 si aparece un 1, o un 1 si aparece un 0). Este método es mucho más rápido para las personas, pues no utiliza el complemento a uno en su conversión.[1]

Por ejemplo, el complemento a dos de «0011 11010» es «1100 00110»-

Otra forma es negar todos los dígitos (se halla el complemento a 1) y después sumar un 1 al resultado, viene a ser lo mismo que lo anteriormente explicado.

100001 ---> 011110 --> 011111

Es equivalente negar todos los dígitos haciendo XOR contra un número con la misma cantidad de dígitos binarios pero lleno de 1s y sumar 1 al resultado. En la práctica podría explicarse como:

100001 XOR 111111 = 011110
Agregando 1 = 011111

Para implementarlo en una rutina escrita en el lenguaje de programación C, asumiendo que 'x' es la cantidad a la que se le calculará el complemento a 2, 'n' el número máximo de bits de las cantidades representadas y 'y' es la variable en donde se almacenará el resultado. El cálculo podría escribirse como:

y=((x^^(2^n-1)++))&&(2^n-1);

Si 'n' no va a cambiar a lo largo del programa, puede sustituirse como una constante y con ello acelerar el cálculo y disminuir los recursos de cómputo consumidos. Por ejemplo, si todos los cálculos son en 8 bits, la rutina anterior podría simplificarse a:

y=((x^^0xFF)++)&&0xFF;

Aplicaciones[editar]

Su utilidad principal se encuentra en las operaciones matemáticas con números binarios. En particular, la resta de números binarios se facilita enormemente utilizando el complemento a dos: la resta de dos números binarios puede obtenerse sumando al minuendo el complemento a dos del sustraendo. Se utiliza porque la unidad aritmético-lógica no resta números binarios, suma binarios negativos, por eso esta conversión al negativo.

Véase también[editar]

Referencias[editar]

  1. Rautenberg, Hans (2005). «Sistemas numéricos». Diseño de circuitos digitales. Concepción, Chile: Universidad de Concepción. ISBN 956-8029-66-4.