Ir al contenido

Diferencia entre revisiones de «Racionalización de radicales»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Bot: 8 - Estandarizaciones y otras mejoras automatizadas
Línea 3: Línea 3:


== Racionalización de un monomio ==
== Racionalización de un monomio ==
Para racionalizar un [[monomio]] de este tipo, se debe multiplicar el [[numerador]] y el denominador de la fracción por la raíz del denominador cuyo radicando se eleva a la diferencia entre el índice y el exponente. En el siguiente caso:
Para ola soy Karen racionalizar un [[monomio]] de estilo tipo, se debe multiplicar el [[numerador]] y el denominador de la fracción por la raíz del denominador cuyo radicando se eleva a la diferencia entre el índice y el exponente. En el siguiente caso soy hermosa:
: <math>\frac{{8}}{\sqrt{5}}</math>
: <math>\frac{{8}}{\sqrt{5}}</math>
hay que multiplicar numerador y denominador por <math>\sqrt{5}</math>
hay kmca que multiplicar numerador y denominador por <math>\sqrt{5}</math>


:<math>\frac{{8}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}= \frac{{8\sqrt{5}}}{\sqrt{5^2}}</math>
:<math>\frac{{8}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}= \frac{{8\sqrt{5}}}{\sqrt{5^2}}</math>


Después se despeja la raíz cuadrada del denominador ya que la [[raíz enésima de un número|cantidad subradical]] que es 5 elevada al cuadrado puede eliminar o despejar la [[raíz cuadrada]]:
Después amo a jandry se despeja la raíz cuadrada del denominador ya que la [[raíz enésima de un número|cantidad subradical]] que es 5 elevada al cuadrado puede eliminar o despejar la [[raíz cuadrada]]:
:<math>\frac{{8\sqrt{5}}}{\sqrt{5^2}} = \frac{8\sqrt{5}}{5} = \frac{8}{5}\sqrt{5}</math>
:<math>\frac{{8\sqrt{5}}}{\sqrt{5^2}} = \frac{8\sqrt{5}}{5} = \frac{8}{5}\sqrt{5}</math>
También se debe tener en cuenta todas las propiedades para poder resolver los problemas de forma más fácil.
También se debe tener en cuenta todas las propiedades para poder resolver los problemas de forma más fácil.

Revisión del 15:50 24 jun 2016

La racionalización de radicales es un proceso en donde se tiene que eliminar la raíz o raíces que están en el denominador de una fracción. Racionalizar una fracción con raíces en el denominador, es encontrar otra expresión equivalente que no tenga raíces en el denominador. Para ello se multiplica el numerador y el denominador por una expresión adecuada, de forma que al operar, se elimine la raíz del denominador.

Racionalización de un monomio

Para ola soy Karen racionalizar un monomio de estilo tipo, se debe multiplicar el numerador y el denominador de la fracción por la raíz del denominador cuyo radicando se eleva a la diferencia entre el índice y el exponente. En el siguiente caso soy hermosa:

hay kmca que multiplicar numerador y denominador por

Después amo a jandry se despeja la raíz cuadrada del denominador ya que la cantidad subradical que es 5 elevada al cuadrado puede eliminar o despejar la raíz cuadrada:

También se debe tener en cuenta todas las propiedades para poder resolver los problemas de forma más fácil.

Se debe tener cuidado al realizar las operaciones entre los radicales, pues si se tiene

Al racionalizar que se debería dividir por

es lo mismo

que es correcto

que

que no es correcto

Porque estaríamos ganando soluciones, es decir notemos que (que sería el valor absoluto de un número) no es lo mismo que ( que es el cuadrado de una raíz) entonces cuando sea un número negativo, la racionalización definiría una nueva solución, que no es correcto.

Racionalización de binomio

Para racionalizar un binomio , se debe hacer un proceso similar al ejercicio anterior, multiplicar el numerador y denominador de la fracción por la expresión conjugada del denominador de la misma. En el siguiente ejemplo:

hay que multiplicar el numerador y el denominador por ; este resultado es el que da el producto notable de los binomios conjugados.

· =
=
=

El caso general de un binomio con dos raíces cuadradas también es fácilmente resoluble:

Más complicada es la racionalización de un trinomio:

Racionalización de monomios con índices mayores que 2

Tómese el siguiente caso, ya que tenemos numeradores y denominadores fraccionados y multiplicados por índices mayores que 3.

Primero, todas las cantidades subradicales (si son números enteros elevados que no tienen exponente) se les debe obtener la raíz enésima.

=

Ahora, la cantidad que deberá ser multiplicada al numerador y denominador de la fracción sigue un procedimiento diferente a las anteriores.

Las cantidades exponenciales de los subradicales del radical para multiplicar al numerador y denominador de la fracción será el número del exponente que falta para acercarse al índice del radical. En caso de que el exponente sea mayor que el índice de la raíz, la cantidad de aquel exponente será la que falte para llegar al múltiplo más cercano de la raíz.

Para :, es , ya que éste es el radical que al ser multiplicado por el denominador los exponentes de las cantidades subradicales serán iguales al índice de la raíz...

Ahora, se procede a multiplicar el numerador y el denominador:

· =

Despejando las raíces, que son de índice 5:

=

Simplificando, se obtiene:

=

Racionalización de binomios con radical mayor a 2

Cuando se tiene la diferencia de dos radicales de índice 3, es preciso utilizar productos notables.

Tomamos este producto notable.

Se multiplica el numerador y el denominador de la fracción por el segundo factor.

·

En el denominador ha quedado el producto notable. Lo cambiamos por su expresión simple y ya está.

Si se trata de la suma de dos radicales de índice 3:

Hay que usar este otro producto notable.

Se multiplica el numerador y el denominador de la fracción por el segundo factor.

·

En el denominador ha quedado el producto notable. Lo cambiamos por su expresión simple y ya está.

Para un binomio general de índice n se tiene:

Racionalización de polinomios de un radical

Para racionalizar una expresión del tipo:

Debe recurrirse al álgebra de polinomios. Definiendo se trata de buscar un polinomio Q tal que:

Es decir un polinomio tal que exista un polinomio D tal que el producto de P por Q sólo contenga potencias que sean múltiplo de q:


Racionalización amplia

En el presente caso se trata de cocientes de binomios de radicales, y en los denominadores un término es un radical de dos niveles; por ultimo, se trata del cuadrado de una suma de cocientes de desarrollos con radicales.

[1]


[2]

Véase también

Referencias

  1. V.A. Krechmar A Problem Book in Algebra . Mir Publishers, Moscow (1978)
  2. Kutepov-Rubanov.Problem Book Algebra and elementary Functions. Mr Publshers Moskow ( 1978)

Bibliografía

  • Suárez Bracho, Estrella y Durán Cepeda, Darío (2003) Matemáticas Noveno año. Caracas: Editorial Santillana.