Ir al contenido

Diferencia entre revisiones de «Crecimiento bacteriano»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
MomijiRoBot (discusión · contribs.)
m Bot: <small>Consultado…26/02/2014</small> → Consultado el 26/02/2014, <small>Consultado…28/10/2012</small> → Consultado el 28/10/2012 ∵Eliminar: etiqueta <small> dentro/fuera de ref,sup o sub PR:CW#63
Sin resumen de edición
Línea 1: Línea 1:
[[Archivo:Bacterial growth.png|250px|right|thumb|El crecimiento se muestra como ''L'' = log(núm) donde '''núm''' es el número de colonias por mL con actividad reproductora positiva, frente a ''T'' (tiempo.)]]
[[Archivo:Bacterial growth.png|250px|right|thumb|El crecimiento se muestra como ''L'' = log(núm) donde '''núm''' es el número de colonias por mL con actividad reproductora positiva, frente a ''T'' (tiempo.)]]maincla
El '''crecimiento bacteriano''' es la [[Reproducción asexual|división]] de una [[bacteria]] en dos [[célula]]s hijas en un proceso llamado [[fisión binaria]]. Suponiendo que no se produzca ningún caso de [[mutación]] las células hijas resultantes serán genéticamente idénticas a la célula original. De este modo tiene lugar la "duplicación local" de la población bacteriana. Las dos células hijas creadas tras la división no sobreviven necesariamente. Sin embargo, si el número de supervivientes supera la unidad, en promedio, la población bacteriana experimenta un [[crecimiento exponencial]]. La medición de una curva del crecimiento exponencial de las bacterias en un cultivo ha sido tradicionalmente una parte de la formación de todos los [[microbiólogo]]s. Los procesos fundamentales empleados para ello son la enumeración bacteriana ([[conteo bacteriano]]) por métodos directos e individuales ([[microscopía]], [[citometría de flujo]]<ref name="pmid6341358">{{cita publicación |autor=Skarstad K, Steen HB, Boye E |título=Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry |publicación=[[J. Bacteriol.]] |volumen=154 |número=2 |páginas=656–62 |año=1983 |pmid=6341358 |doi= |pmc=217513}}</ref>), por métodos directos y masivos (biomasa), por métodos indirectos e individuales (conteo de colonias), o por métodos indirectos y en bloque ([[número más probable]], [[turbidez]], absorción de nutrientes). Los modelos permiten conciliar la teoría con las mediciones.<ref>{{cita publicación |publicación=Applied and Environmental Microbiology |año=1990 |volumen=56 |número=6 |páginas=1875–1881 |título=Modeling of the Bacterial Growth Curve |autor=Zwietering M H, Jongenburger I, Rombouts F M, van 'T Riet K |pmid=16348228 |pmc=184525}}</ref>
El '''crecimiento bacteriano''' es la [[Reproducción asexual|división]] de una [[bacteria]] en dos [[célula]]s hijas en un proceso llamado [[fisión binaria]]. Suponiendo que no se produzca ningún caso de [[mutación]] las células hijas resultantes serán genéticamente idénticas a la célula original. De este modo tiene lugar la "duplicación local" de la población bacteriana. Las dos células hijas creadas tras la división no sobreviven necesariamente. Sin embargo, si el número de supervivientes supera la unidad, en promedio, la población bacteriana experimenta un [[crecimiento exponencial]]. La medición de una curva del crecimiento exponencial de las bacterias en un cultivo ha sido tradicionalmente una parte de la formación de todos los [[microbiólogo]]s. Los procesos fundamentales empleados para ello son la enumeración bacteriana ([[conteo bacteriano]]) por métodos directos e individuales ([[microscopía]], [[citometría de flujo]]<ref name="pmid6341358">{{cita publicación |autor=Skarstad K, Steen HB, Boye E |título=Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry |publicación=[[J. Bacteriol.]] |volumen=154 |número=2 |páginas=656–62 |año=1983 |pmid=6341358 |doi= |pmc=217513}}</ref>), por métodos directos y masivos (biomasa), por métodos indirectos e individuales (conteo de colonias), o por métodos indirectos y en bloque ([[número más probable]], [[turbidez]], absorción de nutrientes). Los modelos permiten conciliar la teoría con las mediciones.<ref>{{cita publicación |publicación=Applied and Environmental Microbiology |año=1990 |volumen=56 |número=6 |páginas=1875–1881 |título=Modeling of the Bacterial Growth Curve |autor=Zwietering M H, Jongenburger I, Rombouts F M, van 'T Riet K |pmid=16348228 |pmc=184525}}</ref>



Revisión del 20:03 4 sep 2017

El crecimiento se muestra como L = log(núm) donde núm es el número de colonias por mL con actividad reproductora positiva, frente a T (tiempo.)

maincla

El crecimiento bacteriano es la división de una bacteria en dos células hijas en un proceso llamado fisión binaria. Suponiendo que no se produzca ningún caso de mutación las células hijas resultantes serán genéticamente idénticas a la célula original. De este modo tiene lugar la "duplicación local" de la población bacteriana. Las dos células hijas creadas tras la división no sobreviven necesariamente. Sin embargo, si el número de supervivientes supera la unidad, en promedio, la población bacteriana experimenta un crecimiento exponencial. La medición de una curva del crecimiento exponencial de las bacterias en un cultivo ha sido tradicionalmente una parte de la formación de todos los microbiólogos. Los procesos fundamentales empleados para ello son la enumeración bacteriana (conteo bacteriano) por métodos directos e individuales (microscopía, citometría de flujo[1]​), por métodos directos y masivos (biomasa), por métodos indirectos e individuales (conteo de colonias), o por métodos indirectos y en bloque (número más probable, turbidez, absorción de nutrientes). Los modelos permiten conciliar la teoría con las mediciones.[2]

Fases

Curva de crecimiento bacteriano

En estudios autoecológicos, el crecimiento bacteriano en un cultivo de lotes se pueden modelar suponiendo cuatro fases diferentes: fase de adaptación (A), fase exponencial (B), fase estacionaria (C), y fase de declive (D).[3][4]

A. Durante la fase de adaptación o rezago, las bacterias se adaptan a las condiciones de crecimiento. Es el período en el que las bacterias individuales están madurando y no tienen aún la posibilidad de dividirse. Durante la fase de adaptación del ciclo de crecimiento de las bacterias, se produce la síntesis de ARN, enzimas y otras moléculas. Así que en esta fase los microorganismos no están latentes.

B. La fase de liberación logarítmica o exponencial es un período caracterizado por la duplicación celular.[5]​ El número de nuevas bacterias que aparecen por unidad de tiempo es proporcional a la población actual. Si el crecimiento no se limita, la duplicación continuará a un ritmo constante, por lo tanto el número de células de la población se duplica con cada período de tiempo consecutivo. Para este tipo de crecimiento exponencial, la representación gráfica del logaritmo del número de células frente al tiempo genera una línea recta. La pendiente de la recta en la figura depende de la base del logaritmo utilizada, y dependiendo de esa base, en la literatura se han asignado diferentes nombres a la pendiente y se han aplicado diferentes fórmulas para su estudio.[6]​ También afectan a la pendiente las condiciones de crecimiento, que afecta a la frecuencia de los eventos de división celular y a la probabilidad de que ambas células hijas sobrevivan. Bajo condiciones controladas, las cianobacterias pueden duplicar su población cuatro veces al día.[7]​ Sin embargo, el crecimiento exponencial no puede continuar indefinidamente, porque el medio llega pronto al agotamiento de nutrientes mientras se acumulan los desechos.

C. Durante la fase estacionaria, la tasa de crecimiento disminuye como consecuencia del agotamiento de nutrientes y la acumulación de productos tóxicos. Esta fase se alcanza cuando las bacterias empiezan a agotar los recursos que están disponibles para ellas. Esta fase se caracteriza por un valor constante del número de bacterias a medida que la tasa de crecimiento de las bacterias se iguala con la tasa de muerte bacteriana.

D. En la fase de declinación, las bacterias se quedan sin nutrientes y mueren.

Esta modelo de crecimiento del cultivo básico en lotes se mantiene y pone su énfasis en los aspectos de la proliferación de bacterias que pueden diferir de las del crecimiento de la macrofauna. Se hace hincapié en clonalidad, división asexual binaria, el breve tiempo de desarrollo en relación con la replicación en sí, la tasa de mortalidad aparentemente baja, la necesidad de pasar de un estado inactivo a un estado reproductivo y, por último, la tendencia de cepas adaptadas de laboratorio para agotar sus nutrientes.

En realidad, incluso en los cultivos por lotes, las cuatro fases no están bien definidas. Las células no se reproducen en sincronía sin una explícita y continua instigación (como en los experimentos con bacterias forzadas[8]​) y su fase de crecimiento exponencial a menudo no sigue siempre un ritmo constante, sino que en su lugar poseen una tasa de lenta decadencia, una respuesta estocástica constante ante las presiones simultáneas de reproducirse y de permanecer latentes ante la disminución de las concentraciones de nutrientes y el aumento de las concentraciones de residuos.

El cultivo en lotes es el medio de cultivo de laboratorio más común en el que se ha estudiado el crecimiento de bacterias, pero es sólo uno de los muchos posibles. En condiciones ideales, está espacialmente estructurado y no estructurado temporalmente. El cultivo de bacterias se incuba en un recipiente cerrado con un único lote de medio de cultivo. En algunos sistemas experimentales, algunos de los cultivos bacterianos se retiran periódicamente y un medio fresco estéril se añade. En el caso extremo, esto se lleva a la continua renovación de los nutrientes. Se trata de un quimiostato también conocido como cultivo continuo. Está espacialmente estructurado y no estructurado temporalmente, en un estado de equilibrio definido por la tasa de suministro de nutrientes y la reacción de las bacterias. En comparación con el cultivo en lotes, las bacterias se mantienen en fase de crecimiento exponencial y la tasa de crecimiento de la bacteria es conocida. Los dispositivos de este tipo son por ejemplo los turbidoestatos y auxoestatos.

El crecimiento bacteriano se puede suprimir con bacteriostáticos, sin necesidad de matar las bacterias. En un sinecológico, una situación similar a la naturaleza, cuando más de una especie bacteriana está presente, el crecimiento de los microbios es más dinámico y continuo.

El líquido no es el único sistema de laboratorio para el crecimiento bacteriano. Otros entornos espaciales estructurados como los biofilms o superficies de agar presentan modelos de crecimiento adicionalmente complejos.

Referencias

  1. Skarstad K, Steen HB, Boye E (1983). «Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry». J. Bacteriol. 154 (2): 656-62. PMC 217513. PMID 6341358. 
  2. Zwietering M H, Jongenburger I, Rombouts F M, van 'T Riet K (1990). «Modeling of the Bacterial Growth Curve». Applied and Environmental Microbiology 56 (6): 1875-1881. PMC 184525. PMID 16348228. 
  3. Microbiologia Y Parasitologia Humanas. Raúl Romero Cabello, Editorial Médica Panamericana, 2007. ISBN 968-7988-48-7. Pág. 464
  4. [1] J. L Sanz. Cinética y crecimiento bacteriano Consultado el 28/10/2012
  5. "http://web.archive.org/web/http://www.ifr.ac.uk/bacanova/project_backg.html". Acceso el 7 de mayo de 2008
  6. [2] J. Bikandi. Cinética de la fase exponencial de la curva de crecimiento microbianoConsultado el 26/02/2014
  7. "Marshall T. Savage - An Exponentialist View" (en inglés)
  8. Novick A (1955). «Growth of Bacteria». Annual Review of Microbiology 9: 97-110. PMID 13259461. doi:10.1146/annurev.mi.09.100155.000525. 

Véase también

Enlaces externos

Este artículo incluye material de un artículo editado el 26 de abril de 2003 en Nupedia; escrito por Nagina Parmar; revisado y aprobado por el grupo de Biología; editor, Gaytha Langlois; revisor principal, Gaytha Langlois; otros editores, Ruth Ifcher. y Jan Hogle.