Diferencia entre revisiones de «Fibración de Hopf»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
Sin resumen de edición
Línea 1: Línea 1:
[[Archivo:Hopf Fibration.png|right|250px|thumb|Es posible visualizar la fibración de Hopf utilizando una [[proyección estereográfica]] de ''S''<sup>3</sup> a '''R'''<sup>3</sup> y luego comprimir ''R''<sup>3</sup> en una bola. Esta imagen muestra puntos en ''S''<sup>2</sup> y sus correspondientes fibras con el mismo color.]]
[[Archivo:Hopf Fibration.png|right|250px|thumb|Es posible visualizar la fibración de Hopf utilizando una [[proyección estereográfica]] de ''S''<sup>3</sup> a '''R'''<sup>3</sup> y luego comprimir ''R''<sup>3</sup> en una bola. Esta imagen muestra puntos en ''S''<sup>2</sup> y sus correspondientes fibras con el mismo color.]]
[[Archivo:Hopfkeyrings.jpg|right|250px|thumb|En este modelo las argollas simulan parte de la fibración de Hopf by showing some of the circles of the Hopf fibration which lie on a common [[torus]].]]
[[Archivo:Hopfkeyrings.jpg|right|250px|thumb|En este modelo las argollas simulan parte de la fibración de Hopf by showing some of the circles of the Hopf fibration which lie on a common [[torus]].]]
En el ámbito de la rama de la matemáticas denominado [[topologia]], la '''fibración de Hopf''' (también denominada el '''Hopf bundle''' o '''mapa de Hopf''') describe una [[3-esfera]] (una [[hiperesfera]] en el [[Cuarta dimensión|espacio de cuatro dimensiones]]) mediante [[círculos]] y una [[esfera]] ordinaria. Descubierta en 1931 por [[Heinz Hopf]], es un ejemplo inicial importante de un [[Fibrado|haz de fibras]]. Tecnicamente, Hopf descubrió una [[función continua]] (o "mapa") de varios a uno de la 3-esfera en la 2-esfera tal que cada ''punto'' en particular de la 2-esfera proviene de un ''círculo'' específico de la 3-esfera {{harv|Hopf|1931}}. Por lo tanto la 3-esfera se compone de fibras, donde cada fibra es un círculo — uno para cada punto de la 2-esfera.
En la rama de las matemáticas denominada [[topologia]], la '''fibración de Hopf''' (también denominada el '''haz de Hopf''' o '''mapa de Hopf''') describe una [[3-esfera]] (una [[hiperesfera]] en el [[Cuarta dimensión|espacio de cuatro dimensiones]]) mediante [[círculos]] y una [[esfera]] ordinaria. Descubierta en 1931 por [[Heinz Hopf]], es un ejemplo inicial importante de un [[Fibrado|haz de fibras]]. Tecnicamente, Hopf descubrió una [[función continua]] (o "mapa") de varios a uno de la 3-esfera en la 2-esfera tal que cada ''punto'' en particular de la 2-esfera proviene de un ''círculo'' específico de la 3-esfera {{harv|Hopf|1931}}. Por lo tanto la 3-esfera se compone de fibras, donde cada fibra es un círculo — uno para cada punto de la 2-esfera.


Esta estructura de haz de fibras queda expresada mediante la expresión
Esta estructura de haz de fibras queda expresada mediante la expresión
Línea 10: Línea 10:


[[Stereographic projection]] of the Hopf fibration induces a remarkable structure on '''R'''<sup>3</sup>, in which space is filled with nested [[torus|tori]] made of linking [[Villarceau circles]]. Here each fiber projects to a [[circle]] in space (one of which is a line, thought of as a "circle through infinity"). Each torus is the stereographic projection of the [[inverse image]] of a circle of latitude of the 2-sphere. (Topologically, a torus is the product of two circles.) These tori are illustrated in the images at right. When '''R'''<sup>3</sup> is compressed to a ball, some geometric structure is lost although the topological structure is retained (see [[Geometry#Topology_and_geometry|Topology and Geometry]]). The loops are [[homeomorphic]] to circles, although they are not geometric [[circle]]s.
[[Stereographic projection]] of the Hopf fibration induces a remarkable structure on '''R'''<sup>3</sup>, in which space is filled with nested [[torus|tori]] made of linking [[Villarceau circles]]. Here each fiber projects to a [[circle]] in space (one of which is a line, thought of as a "circle through infinity"). Each torus is the stereographic projection of the [[inverse image]] of a circle of latitude of the 2-sphere. (Topologically, a torus is the product of two circles.) These tori are illustrated in the images at right. When '''R'''<sup>3</sup> is compressed to a ball, some geometric structure is lost although the topological structure is retained (see [[Geometry#Topology_and_geometry|Topology and Geometry]]). The loops are [[homeomorphic]] to circles, although they are not geometric [[circle]]s.
-->

There are numerous generalizations of the Hopf fibration. The unit sphere in '''C'''<sup>''n''+1</sup> fibers naturally over '''CP'''<sup>''n''</sup> with circles as fibers, and there are also [[real number|real]], [[quaternion]]ic, and [[octonion]]ic versions of these fibrations. In particular, the Hopf fibration belongs to a family of four fiber bundles in which the total space, base space, and fiber space are all spheres:
Existen numerosas generalizaciones de la fibración de Hopf. La esfera unidad en '''C'''<sup>''n''+1</sup> se fibra naturalmente en '''CP'''<sup>''n''</sup> with circles as fibers, existen también versiones de estas fibraciones [[número real|reales]], [[quaternion]]icas, y [[octonion]]icas. En particular, lafibraciónn de Hopf corresponde a una familia de cuatro haces de fibras en los cuales el espacio total, el espacio base, y el espacio fibra son todos esferas:
:<math>S^0\hookrightarrow S^1 \rightarrow S^1, \,\!</math>
:<math>S^0\hookrightarrow S^1 \rightarrow S^1, \,\!</math>
:<math>S^1\hookrightarrow S^3 \rightarrow S^2, \,\!</math>
:<math>S^1\hookrightarrow S^3 \rightarrow S^2, \,\!</math>
:<math>S^3\hookrightarrow S^7 \rightarrow S^4,\,\!</math>
:<math>S^3\hookrightarrow S^7 \rightarrow S^4,\,\!</math>
:<math>S^7\hookrightarrow S^{15}\rightarrow S^8. \,\!</math>
:<math>S^7\hookrightarrow S^{15}\rightarrow S^8. \,\!</math>
By [[Adams' theorem]] such fibrations can occur only in these dimensions.
Según establece el [[teorema de Adams]] such fibrations can occur only in these dimensions.

-->
La fibración de Hopf es importante en el ámbito de la [[teoría de twistores]].
La fibración de Hopf es importante en el ámbito de la [[teoría de twistores]].



Revisión del 04:56 31 dic 2012

Es posible visualizar la fibración de Hopf utilizando una proyección estereográfica de S3 a R3 y luego comprimir R3 en una bola. Esta imagen muestra puntos en S2 y sus correspondientes fibras con el mismo color.
En este modelo las argollas simulan parte de la fibración de Hopf by showing some of the circles of the Hopf fibration which lie on a common torus.

En la rama de las matemáticas denominada topologia, la fibración de Hopf (también denominada el haz de Hopf o mapa de Hopf) describe una 3-esfera (una hiperesfera en el espacio de cuatro dimensiones) mediante círculos y una esfera ordinaria. Descubierta en 1931 por Heinz Hopf, es un ejemplo inicial importante de un haz de fibras. Tecnicamente, Hopf descubrió una función continua (o "mapa") de varios a uno de la 3-esfera en la 2-esfera tal que cada punto en particular de la 2-esfera proviene de un círculo específico de la 3-esfera (Hopf, 1931). Por lo tanto la 3-esfera se compone de fibras, donde cada fibra es un círculo — uno para cada punto de la 2-esfera.

Esta estructura de haz de fibras queda expresada mediante la expresión

que significa que el espacio de fibra S1 (un círculo) se encuentra embebido en el espacio total S3 (la 3-esfera), y pS3S2 (Mapa de Hopf) proyecta S3 en el espacio base S2 (la 2-esfera ordinaria). La fibración de Hopf, al igual que todo haz de fibras, posee la propiedad que es un producto espacial local. Sin embargo es un haz de fibras no trivial, o sea S3 no es en sentido global un producto de S2 y S1 aunque a nivel local es indistinguible de este. Existen numerosas generalizaciones de la fibración de Hopf. La esfera unidad en Cn+1 se fibra naturalmente en CPn with circles as fibers, existen también versiones de estas fibraciones reales, quaternionicas, y octonionicas. En particular, lafibraciónn de Hopf corresponde a una familia de cuatro haces de fibras en los cuales el espacio total, el espacio base, y el espacio fibra son todos esferas:

Según establece el teorema de Adams such fibrations can occur only in these dimensions.

La fibración de Hopf es importante en el ámbito de la teoría de twistores.


Referencias

Enlaces externos