Diferencia entre revisiones de «Modelo atómico de Rutherford»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 190.20.53.187 (disc.) a la última edición de Mel 23
Línea 19: Línea 19:
Se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico.
Se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico.


== Importancia del modelo ==
uuu
La importancia del modelo de Rutherford no residió en proponer la existencia de un núcleo en el átomo. Término que, paradójicamente, no aparece en sus escritos. Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que si no, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.

Rutherford propuso que los [[electrón|electrones]] orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abrían varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlos:
* Por un lado se planteó el problema de cómo un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la [[fuerza nuclear fuerte]], que es una de las cuatro [[interacciones fundamentales]].
* Por otro lado existía otra dificultad proveniente de la [[electrodinámica]] clásica que predice que una partícula cargada y acelerada, como sería necesario para mantenerse en órbita, produciría [[radiación electromagnética]], perdiendo energía. Las [[leyes de Newton]], junto con las [[ecuaciones de Maxwell]] del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de <math>10^{-10}</math>s, toda la energía del átomo se habría radiado, con la consiguiente caída de los electrones sobre el núcleo.<ref name="Bransden">B.H. Bransden and C.J. Joachain (1992), ''Physics of Atomos and Molecules''. Harlow-Essex-England, Longman Group Limited. 0-582-44401-2</ref> Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la [[física clásica]].

Aunque según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. No obstante, los resultados de su experimento, permitieron calcular que el radio del átomo era diez mil veces mayor que el núcleo mismo, lo que hace que haya un gran espacio vacío en el interior de los átomos.


== Modelos posteriores ==
== Modelos posteriores ==

Revisión del 14:53 4 jun 2010

Modelo de un átomo de Rutherford.

El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.

Introducción

Antes de la propuesta de Rutherford,los físicos aceptaban que las cargas eléctricas en el átomo tenían una distribución más o menos uniforme. Rutherford trató de ver como era la dispersión de partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos deflactados por las partículas supuestamente aportarían información sobre como era la distribución de carga en los átomos. En concreto, era de esperar que si las cargas estaban distribuidas acordemente al modelo de Thomson la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflacciones en su trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente.

Rutherford apreció que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se asumía que existían fuertes concentraciones de cargas positivas en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente ligera, por parte de un átomo de oro más pesado depende del parámetro de impacto o distancia a la que la partícula alfa pasaba del núcleo:[1]

(1)

Donde:

, siendo la constante dieléctrica del vacío y , es la carga eléctrica del centro dispersor.
, es la energía cinética inicial de la partícula alfa incidente.
es el parámetro de impacto.

Dado que Rutherford observó una fracción apreciable de partículas "rebotadas" para las cuales el ángulo de deflexión es cercano a χ ≈ π, de la relación inversa a (1) que es:

(2)

Se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico.

Importancia del modelo

La importancia del modelo de Rutherford no residió en proponer la existencia de un núcleo en el átomo. Término que, paradójicamente, no aparece en sus escritos. Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que si no, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.

Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abrían varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlos:

  • Por un lado se planteó el problema de cómo un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales.
  • Por otro lado existía otra dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada y acelerada, como sería necesario para mantenerse en órbita, produciría radiación electromagnética, perdiendo energía. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de s, toda la energía del átomo se habría radiado, con la consiguiente caída de los electrones sobre el núcleo.[2]​ Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.

Aunque según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. No obstante, los resultados de su experimento, permitieron calcular que el radio del átomo era diez mil veces mayor que el núcleo mismo, lo que hace que haya un gran espacio vacío en el interior de los átomos.

Modelos posteriores

El modelo atómico de Rutherford fue sustituido muy pronto por el de Bohr. Bohr intentó explicar fenomenológicamente que sólo algunas órbitas de los electrones son posibles. Lo cual daría cuenta de los espectros de emisión y absorción de los átomos en forma de bandas discretas

El modelo de Bohr "resolvía" el problema proveniente de la electrodinámica postulando que sencillamente los electrones no radiaban, hecho que fue explicado por la mecánica cuántica según la cual la aceleración promedio del electrón deslocalizado era nula.

Referencias

  1. Landau & Lifshitz, pp. 63-65
  2. B.H. Bransden and C.J. Joachain (1992), Physics of Atomos and Molecules. Harlow-Essex-England, Longman Group Limited. 0-582-44401-2
  • Landau & Lifshitz: Mecánica, Ed. Reverté, Barcelona, p.158 - 175, 1991. ISBN 84-291-4081-6.

Véase también