Ir al contenido

Diferencia entre revisiones de «Triángulo rectángulo»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 190.158.96.246 a la última edición de AVBOT
Línea 1: Línea 1:
En [[matemáticas]], el '''teorema de la altura''' establece que en cualquier [[triángulo rectángulo]] la [[altura]] relativa a la [[hipotenusa]] es la [[media proporcional]] entre las [[proyección ortogonal|proyecciones ortogonales]] de los catetos sobre la hipotenusa.
En [[matemáticas]], el '''teorema de la altura''' establece que en cualquier [[triángulo rectángulo]] la [[altura]] relativa a la [[hipotenusa]] es la [[media proporcional]] entre las [[proyección ortogonal|proyecciones ortogonales]] de los catetos sobre la hipotenusa.


===Demostración===
no es "!!
[[Archivo:Triângulo retângulo.svg|right|240px|]]La altura del triángulo rectángulo ABC (ver imagen) lo divide en dos [[triángulos semejantes|triángulos rectángulos semejantes]], de forma que
:<math>\frac{h}{n} = \frac{m}{h}</math>
Multiplicando los dos miembros de la igualdad por <math>hn</math> se tiene:
:<math>h^2=mn \,</math>
por lo que
:<math>h=\sqrt{mn}</math>


[[Categoría:Teoremas de geometría]]
[[Categoría:Teoremas de geometría]]

Revisión del 23:30 6 ago 2009

En matemáticas, el teorema de la altura establece que en cualquier triángulo rectángulo la altura relativa a la hipotenusa es la media proporcional entre las proyecciones ortogonales de los catetos sobre la hipotenusa.

Demostración

La altura del triángulo rectángulo ABC (ver imagen) lo divide en dos triángulos rectángulos semejantes, de forma que

Multiplicando los dos miembros de la igualdad por se tiene:

por lo que