Diferencia entre revisiones de «Fórmula de Herón»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
m Revertidos los cambios de 190.6.109.147 a la última edición de AVBOT
Línea 10: Línea 10:
:<math>S={\ \sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)\,}\ \over 4}\,</math>
:<math>S={\ \sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)\,}\ \over 4}\,</math>


== Demostración ==
Tengo ganas de tirarme un pedo sucio

Una demostración ola querida como estas que estás haciendo[[trigonometría]] (bastante distinta a la que dio Herón en su libro), podría ser la siguiente. Supongamos un triángulo de lados ''a'', ''b'', ''c'' cuyos ángulos opuestos a cada uno de esos lados son ''A'', ''B'', ''C''. Entonces,por el [[Teorema del coseno]], tenemos que:
Una demostración moderna, que emplea [[álgebra]] y [[trigonometría]] (bastante distinta a la que dio Herón en su libro), podría ser la siguiente. Supongamos un triángulo de lados ''a'', ''b'', ''c'' cuyos ángulos opuestos a cada uno de esos lados son ''A'', ''B'', ''C''. Entonces,por el [[Teorema del coseno]], tenemos que:
:<math>\cos(C) = \frac{a^2+b^2-c^2}{2ab}</math>.
:<math>\cos(C) = \frac{a^2+b^2-c^2}{2ab}</math>.
Si utilizamos la relación entre senos y cosenos, llegamos a
Si utilizamos la relación entre senos y cosenos, llegamos a

Revisión del 22:25 9 jun 2009

En geometría, la fórmula de Herón, descubierta por Herón de Alejandría, plantea que la superficie de un triángulo de lados a, b, c viene dada por:

donde p es el semiperímetro

La fórmula puede ser reescrita de la siguiente forma:

Demostración

Una demostración moderna, que emplea álgebra y trigonometría (bastante distinta a la que dio Herón en su libro), podría ser la siguiente. Supongamos un triángulo de lados a, b, c cuyos ángulos opuestos a cada uno de esos lados son A, B, C. Entonces,por el Teorema del coseno, tenemos que:

.

Si utilizamos la relación entre senos y cosenos, llegamos a

.

La altura de un triángulo de base a tiene una longitud b |sin(C)|. Por tanto, siguiendo con la demostración

Generalización

La fórmula de Herón es un caso particular de la fórmula de Brahmagupta para el cálculo de la superficies de cuadriláteros inscritos en una circunferencia; y ambas son casos particulares de la fórmula de Bretschneider para calcular la superficie de un cuadrilátero.

Expresando la fórmula de Herón de forma matricial dentro de un determinante en términos de cuadrados de distancias de los tres vértices dados, obtenemos:

que es muy parecida a la fórmula de Tartaglia para el cálculo de un volumen de un tetraedro

Ninguno de los resultados puede dar 0, pues no tendría solución el problema; por ejemplo: a=10, b=20, c=30, el primero saldría bien porque es una suma, pero los siguientes (a+b-c)=(10+20-30)=0 nunca se puede dar esa situación.

Enlaces externos