Prueba de Anderson-Darling

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En estadística, la prueba de Anderson-Darling es una prueba no paramétrica sobre si los datos de una muestra provienen de una distribución específica. La fórmula para el estadístico A determina si los datos \{Y_1<\dots <Y_N\} (observar que los datos se deben ordenar) vienen de una distribución con función acumulativa F

A^2 = -N-S

donde

S=\sum_{k=1}^N \frac{2k-1}{N}\left[\ln F(Y_k) + \ln\left(1-F(Y_{N+1-k})\right)\right]

El estadístico de la prueba se puede entonces comparar contra las distribuciones del estadístico de prueba (dependiendo que F se utiliza) para determinar el P-valor.

La prueba de Anderson-Darling es una prueba estadística que permite determinar si una muestra de datos se extrae de una distribución de probabilidad. En su forma básica, la prueba asume que no existen parámetros a estimar en la distribución que se está probando, en cuyo caso la prueba y su conjunto de valores críticos siguen una distribución libre. Sin embargo, la prueba se utiliza con mayor frecuencia en contextos en los que se está probando una familia de distribuciones, en cuyo caso deben ser estimados los parámetros de esa familia y debe tenerse estos en cuenta a la hora de ajustar la prueba estadística y sus valores críticos. Cuando se aplica para probar si una distribución normal describe adecuadamente un conjunto de datos, es una de las herramientas estadísticas más potentes para la detección de la mayoría de las desviaciones de la normalidad.