Paradoja de Ellsberg

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

La paradoja de Ellsberg es un fenómeno conocido de la teoría de la decisión. Cuando la gente debe escoger entre dos opciones, la mayoría se decide por aquella donde la probabilidad es conocida. Puede caer en contradicción con el axioma de independencia en la teoría de la decisión.

La experiencia de Ellsberg[editar]

Daniel Ellsberg describió su experiencia en 1961: una urna contiene 90 bolas donde 30 son rojas. El resto de las bolas son amarillas o negras, su distribución es desconocida. Un caso de incertidumbre knightiana.

Algunas personas fueron sometidas a una apuesta:

  • Apuesta A: Quien saque una bola roja gana una cantidad monetaria, las amarillas y las negras pierden.
  • Apuesta B: Quien saque una bola amarilla gana, el resto pierde.

La mayoría de las personas optan por la A.

Después se cambian las apuestas de una manera que en ambos casos, las bolas negras son desde ahora ganadoras:

  • Apuesta C: Quien saque una bola roja o negra gana, las amarillas pierden.
  • Apuesta D: Quien saque una bola amarilla o negra gana, las rojas pierden.

En este caso, la mayoría de las personas escogen la D. Lo cual entra en contradicción con la decisión anterior de escoger la apuesta A, a pesar de que la bola negra es ganadora en ambas C y D, lo cual no aporta diferencia alguna (por esto es una Paradoja). Ellsberg explica a éste resultado entre el riesgo y la incertidumbre: en la noción de riesgo, la probabilidad es conocida (ejemplo: lanzamiento de dados) pero no la incertidumbre.

Ellsberg explica este resultado por la toma de decisión entre el riesgo y la incertidumbre, algo que se denominó como incertidumbre knightiana. Las personas sometidas al test suponen prudentemente que la distribución desconocida entre bolas rojas y amarillas pueden traerles desventaja y por lo tanto escogen en ambas ocasiones bajo el riesgo conocido (1/3 en la primera prueba, 2/3 en la segunda)

Bibliografía[editar]