Diferencia entre revisiones de «Efecto Venturi»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Manuelt15 (discusión · contribs.)
m Revertidos los cambios de 189.144.245.198 a la última edición de TXiKiBoT
Línea 26: Línea 26:


Cuando se utiliza un tubo de Venturi hay que tener en cuenta un fenómeno que se denomina [[cavitación]]. Este fenómeno ocurre si la presión en alguna sección del tubo es menor que la presión de vapor del fluido. Para este tipo particular de tubo, el riesgo de cavitación se encuentra en la garganta del mismo, ya que aquí, al ser mínima el área y máxima la velocidad, la presión es la menor que se puede encontrar en el tubo. Cuando ocurre la cavitación, se generan burbujas localmente, que se trasladan a lo largo del tubo. Si estas burbujas llegan a zonas de presión más elevada, pueden colapsar produciendo así picos de presión local con el riesgo potencial de dañar la pared del tubo.
Cuando se utiliza un tubo de Venturi hay que tener en cuenta un fenómeno que se denomina [[cavitación]]. Este fenómeno ocurre si la presión en alguna sección del tubo es menor que la presión de vapor del fluido. Para este tipo particular de tubo, el riesgo de cavitación se encuentra en la garganta del mismo, ya que aquí, al ser mínima el área y máxima la velocidad, la presión es la menor que se puede encontrar en el tubo. Cuando ocurre la cavitación, se generan burbujas localmente, que se trasladan a lo largo del tubo. Si estas burbujas llegan a zonas de presión más elevada, pueden colapsar produciendo así picos de presión local con el riesgo potencial de dañar la pared del tubo.
'''holla'''


== Véase también ==
== Véase también ==

Revisión del 06:38 11 jun 2009

Esquema del efecto Venturi.

El efecto Venturi (también conocido tubo de Venturi) consiste en que la corriente de un fluido dentro de un conducto cerrado disminuye la presión del fluido al aumentar la velocidad cuando pasa por una zona de sección menor. Si en este punto del conducto se introduce el extremo de otro conducto, se produce una aspiración del fluido contenido en este segundo conducto. Este efecto, demostrado en 1797, recibe su nombre del físico italiano Giovanni Battista Venturi (1746-1822).

El efecto Venturi se explica por el Principio de Bernoulli y el principio de continuidad de masa. Si el caudal de un fluido es constante pero la sección disminuye, necesariamente la velocidad aumenta. Por el teorema de conservación de la energía si la energía cinética aumenta, la energía determinada por el valor de la presión disminuye forzosamente.

Aplicaciones del efecto Venturi

  • Aeronáutica: Aunque el efecto Venturi se utiliza frecuentemente para explicar la sustentación producida en alas de aviones el efecto Venturi por sí solo no es suficiente para explicar la sustentación aérea. Durante la Primera Guerra Mundial, Albert Einstein diseñó para el ejército alemán un modelo de ala a partir de un análisis del principio de Bernoulli y el efecto Venturi. El prototipo que llegó a ser construido no pudo apenas despegar.
  • Airsoft: Las réplicas usadas en éste juego suelen incluir un sistema llamado HopUp que provoca que el balín sea proyectado realizando un efecto circular, lo que aumenta el alcance efectivo de la réplica.
  • Motor: el carburador aspira el carburante por efecto Venturi, mezclándolo con el aire (fluido del conducto principal), al pasar por un estrangulamiento.
  • Hogar: En los equipos ozonificadores de agua, se utiliza un pequeño tubo Venturi para efectuar una succión del ozono que se produce en un depósito de vidrio, y así mezclarlo con el flujo de agua que va saliendo del equipo con la idea de destruir las posibles bacterias patógenas y de desactivar los virus y otros microorganismos que no son sensibles a la desinfección con cloro.
  • Tubos de Venturi: Medida de velocidad de fluidos en conducciones y aceleración de fluidos.
  • Acuarofilia: En las tomas de bombas de agua o filtros, el efecto Venturi se utiliza para la inyección de aire y/o CO2.

Tubo de Venturi

Un tubo de Venturi es un dispositivo inicialmente diseñado para medir la velocidad de un fluido aprovechando el efecto Venturi. Sin embargo, algunos se utilizan para acelerar la velocidad de un fluido obligándole a atravesar un tubo estrecho en forma de cono. Estos modelos se utilizan en numerosos dispositivos en los que la velocidad de un fluido es importante y constituyen la base de aparatos como el carburador.

La aplicación clásica de medida de velocidad de un fluido consiste en un tubo formado por dos secciones cónicas unidas por un tubo estrecho en el que el fluido se desplaza consecuentemente a mayor velocidad. La presión en el tubo Venturi puede medirse por un tubo vertical en forma de U conectando la región ancha y la canalización estrecha. La diferencia de alturas del líquido en el tubo en U permite medir la presión en ambos puntos y consecuentemente la velocidad.

Cuando se utiliza un tubo de Venturi hay que tener en cuenta un fenómeno que se denomina cavitación. Este fenómeno ocurre si la presión en alguna sección del tubo es menor que la presión de vapor del fluido. Para este tipo particular de tubo, el riesgo de cavitación se encuentra en la garganta del mismo, ya que aquí, al ser mínima el área y máxima la velocidad, la presión es la menor que se puede encontrar en el tubo. Cuando ocurre la cavitación, se generan burbujas localmente, que se trasladan a lo largo del tubo. Si estas burbujas llegan a zonas de presión más elevada, pueden colapsar produciendo así picos de presión local con el riesgo potencial de dañar la pared del tubo.

Véase también

Enlaces externos