Diferencia entre revisiones de «Tomografía por emisión de positrones»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
La maravillaw
m Revertidos los cambios de 190.11.228.91 a la última edición de Muro Bot
Línea 5: Línea 5:
La '''tomografía por emisión de positrones''' o '''PET''' (por las siglas en inglés de ''Positron Emission Tomography''), es una [[tecnología sanitaria]] propia de una especialidad médica llamada [[medicina nuclear]].
La '''tomografía por emisión de positrones''' o '''PET''' (por las siglas en inglés de ''Positron Emission Tomography''), es una [[tecnología sanitaria]] propia de una especialidad médica llamada [[medicina nuclear]].


La maravilla
La Tomografía por Emisión de Positrones es una técnica no invasiva de diagnóstico e investigación ¨in vivo¨por imagen capaz de medir la actividad metabólica del cuerpo humano.. Al igual que el resto de técnicas diagnósticas en Medicina Nuclear como el [[SPECT]], la PET se basa en detectar y analizar la distribución tridimensional que adopta en el interior del cuerpo un radiofármaco de vida media ultracorta administrado a través de una inyección intravenosa.Según que se desee estudiar se usan diferentes radiofármacos.
La Tomografía por Emisión de Positrones es una técnica no invasiva de diagnóstico e investigación ¨in vivo¨por imagen capaz de medir la actividad metabólica del cuerpo humano.. Al igual que el resto de técnicas diagnósticas en Medicina Nuclear como el [[SPECT]], la PET se basa en detectar y analizar la distribución tridimensional que adopta en el interior del cuerpo un radiofármaco de vida media ultracorta administrado a través de una inyección intravenosa.Según que se desee estudiar se usan diferentes radiofármacos.



Revisión del 00:16 18 may 2010

Archivo:Corta transversal PET TAC keosys.JPG
Corta transversal PET TAC.
Imagen capturada en una PET cerebral típica.
Esquema del proceso de captura de la PET.
Vista esquemática de un tomógrafo PET (aquí: Siemens ECAT Exact HR+).

La tomografía por emisión de positrones o PET (por las siglas en inglés de Positron Emission Tomography), es una tecnología sanitaria propia de una especialidad médica llamada medicina nuclear.

La Tomografía por Emisión de Positrones es una técnica no invasiva de diagnóstico e investigación ¨in vivo¨por imagen capaz de medir la actividad metabólica del cuerpo humano.. Al igual que el resto de técnicas diagnósticas en Medicina Nuclear como el SPECT, la PET se basa en detectar y analizar la distribución tridimensional que adopta en el interior del cuerpo un radiofármaco de vida media ultracorta administrado a través de una inyección intravenosa.Según que se desee estudiar se usan diferentes radiofármacos.

La imagen se obtiene gracias a que los tomógrafos son capaces de detectar los fotones emitidos por el paciente. Éstos fotones de 511 Kev son el producto de una aniquilación. La aniquilación se produce entre un positrón,emitido por el radiofármaco y un electrón cortical del paciente. Ésta da lugar a la emisión, fundamentalmente, de dos fotones.Para que estos fotones acaben por conformar la imagen deben detectarse ¨en coincidencia¨, es decir, al mismo tiempo; en una ventana de tiempo adecuada (nanosegundos),además deben provenir de la misma dirección y sentidos opuestos, pero además su energía debe superar un umbral mínimo que certifique que no ha sufrido dispersiones energéticas de importancia en su trayecto (fenómeno de scatter) hasta los detectores. Los detectores de un tomógrafo PET están dispuestos en anillo alrededor del paciente, y gracias a que detectan en coincidencia a los fotones generados en cada aniquilación conformaran la imagen.Para la obtención de la imagen estós fotones detectados, son convertidos en señales eléctricas.Esta información posteriormente se somete a procesos de filtrado y reconstruicción, gracias a los cuales se obtiene la imagen.

Existen varios radiofármacos emisores de positrones de utilidad médica. El más importante de ellos es el Flúor-18, que es capaz de unirse a la desoxi-glucosa para obtener el trazador 18-Flúor-Desoxi-Glucosa (18FDG). Gracias a lo cual, tendremos la posibilidad de poder identificar, localizar y cuantificar, a través del SUV (Standardized Uptake Value), el consumo de glucosa. Esto resulta un arma de capital importancia al diagnostico médico, puesto que muestra que áreas del cuerpo tienen un metabolismo glucídico elevado, que es una de las característica primordial de los tejidos neoplásicos.La utilización de la 18FDG por los procesos oncológicos se basa en que en el interior de las células tumorales se produce sobre todo un metabolismo fundamentalmente anaeróbio que incrementa la expresión de las moléculas transportadoras de glucosa (de la GLUT-1 a la GLUT-9), el aumento de la isoenzima de la hexokinasa y la disminución de la glucosa-6-fosfotasa. La 18FDG si es captada por las células pero al no poder ser metabolizada, sufre un ¨atrapamiento metabólico¨ gracias al cual se obtienen las imágenes.

Así, la PET nos permite estimar los focos de crecimiento celular anormal en todo el organismo, en un solo estudio, por ser de un estudio de cuerpo entero, por lo tanto nos permitirá conocer la extensión. Pero además sirve, entre otras cosas, para evaluar en estudios de control la respuesta al tratamiento, al compara el comportamiento del metabolismo en las zonas de interés entre los dos estudios.

Para el paciente la exploración no es molesta ni dolorosa. Se debe consultar en caso de mujeres lactantes o embarazadas ya que en estas situaciones se debe de retrasar la prueba, o bien no realizarse. Se debe acudir en ayunas de 4-6 horas, evitando el ejercicio físico en el día previo a la exploración y sin retirar la medicación habitual. La hiperglucemia puede imposibilitar la obtención de imágenes adecuadas, obligando a repetir el estudio posteriormente.Tras la inyección del radiofármaco, el paciente permanecerá en una habitación en reposo.La exploración tiene una duración aproximada de 30-45 minutos.

Además de la oncología, donde la PET se ha implantado con mucha fuerza como técnica diagnóstica, desplazando al TAC como primera opción diagnóstica en algunas indicaciones. Otras áreas que se benefician de este tipo de exploraciones son la la neurología,cardiología.También tiene un gran papel en estudios de experimentación clínica.

Véase también

Bibliografía

  • L. de la Cueva-Barrao, E. Noé-Sebastián, P. Sopena-Novales, D. López-Aznar, J. Ferri-Campos, C. Colomer-Font, Relevancia clínica de la FDG-PET en los traumatismos craneoencefálicos graves. Rev Neurol 2009;49:58-63.
  • Sopena R, Martí-Bonmatí L. Técnicas de imagen multimodalidad. Todo Hospital 2009; 255:190-196.
  • Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, Darcourt J, Kapucu OL, Tatsch K, Bartenstein P, Van Laere K. Eur J Nucl Med Mol Imaging. 2009.Dec;36(12):2103-10.
  • Young H, Baum R, Cremerius U, et al.: Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Journal of Cancer, Vol. 35, Issue 13, 1999.

Enlaces externos