Diferencia entre revisiones de «Genes homeóticos»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Sin resumen de edición
Deshecha la edición 36012550 de 80.39.179.45 (disc.)
Línea 34: Línea 34:
Lewis había observado en ''Drosophila'' que los genes homeóticos se encuentran ordenados en los cromosomas agrupados en complejos. Robb Krumlauf y Denis Duboule demostraron que estos genes están dispuestos en un orden preciso en el cromosoma y que este orden se corresponde con el lugar de expresión de los genes en el embrión. Los genes situados en un extremo se expresaban en las regiones anteriores del cuerpo mientras que los situados en el extremo opuesto lo hacían en la región posterior.
Lewis había observado en ''Drosophila'' que los genes homeóticos se encuentran ordenados en los cromosomas agrupados en complejos. Robb Krumlauf y Denis Duboule demostraron que estos genes están dispuestos en un orden preciso en el cromosoma y que este orden se corresponde con el lugar de expresión de los genes en el embrión. Los genes situados en un extremo se expresaban en las regiones anteriores del cuerpo mientras que los situados en el extremo opuesto lo hacían en la región posterior.


En 1995 Lewis, Nüsslein-Volhard y Wieschaus recibieron el [http://nobelprize.org/nobel_prizes/medicine/laureates/1995/press.html premio Nobel] por sus trabajos sobre los genes homeóticos.
En 1995 Lewis, Nüsslein-Volhard y Wieschaus recibieron el premio Nobel por sus trabajos sobre los genes homeóticos.


== Estructura y función de los genes homeóticos ==
== Estructura y función de los genes homeóticos ==

Revisión del 16:08 11 abr 2010

Los genes homeóticos son genes que participan en el desarrollo de los organismos y que determinan la identidad de los segmentos o partes individuales del embrión en sus etapas iniciales. La función normal de los genes homeóticos consiste en conferir a la célula identidad espacial o posicional inequívoca en diferentes regiones a lo largo del eje anteroposterior del cuerpo. Estos genes indican a la célula si forma parte de la cabeza, del tórax o del abdomen del individuo.

Mutación Antennapedia de Drosophila melanogaster

Los genes homeóticos se activan posteriormente a la expresión de otros genes implicados en el desarrollo. En el caso de Drosophila melanogaster, en primer lugar se expresan los genes de polaridad del huevo, que determinan los ejes anteroposterior y dorsoventral del huevo; después lo hacen los genes de segmentación, que determinan el número y la organización de los segmentos del cuerpo. Los productos de estos genes activan a los genes homeóticos que determinan la identidad de cada segmento.

El término homeótico viene del griego homeo, que significa semejante. Los genes homeóticos reciben este nombre porque tras sufrir una mutación adquieren la capacidad de transformar un segmento de su cuerpo en una réplica de otro. Ejemplos típicos en Drosophila melanogaster son las mutaciones antennapedia y bithorax. La primera tiene como resultado la aparición de patas en lugar de las antenas; la segunda provoca la transformación de los halterios en un par de alas adicional.

Aunque inicialmente se descubrieron en Drosophila melanogaster, los genes homeóticos se han identificado en la mayoría de los seres vivos, incluidos los seres humanos. En éstos, al igual que en el resto de los organismos, la mutaciones que afectan a estos genes son responsables de la aparición de alteraciones en el desarrollo corporal.

Los genes homeóticos codifican proteínas que se unen al ADN y cuya función es activar a otros genes. Todos contienen una secuencia muy conservada de 180 nucleótidos, llamada caja homeótica. Ésta se traduce en una región de 60 aminoácidos dentro de la proteína que codifican, el llamado homeodominio, que permite la unión de esta proteína reguladora a la doble hélice del ADN. Los genes homeóticos presentan ligamiento físico, es decir, aparecen organizados en complejos o clusters dentro del mismo cromosoma. Muestran colinealidad espacial, es decir, el orden que muestran en el cromosoma corresponde al orden de expresión en el eje anteroposterior de animal. Los genes del extremo 3’ se expresan en la parte anterior del animal, mientras que los situados en el extremo 5’ lo hacen en la parte más posterior del mismo. Existe además colinealidad temporal: los genes de un extremo del complejo se activan en primer lugar y la expresión de los genes se inicia progresivamente a lo largo del cluster hasta que lo hacen los del extremo opuesto.

Hasta el momento se han identificado distintos tipos de genes con caja homeótica: los genes Hox,[1]​, los genes ParaHox y los genes NK. En vegetales se han localizado genes homeóticos como los genes con cajas MADS [2]​ de Arabidopsis que controlan el desarrollo floral.


Aspectos históricos

Las mutaciones homeóticas se identificaron por primera vez en 1894 cuando William Bateson observó que en ocasiones las partes florales de las plantas aparecían en lugares equivocados. Encontró flores en las que los estambres crecían en el lugar donde solían hacerlo los pétalos.

En 1918 Harrison realizó transplantes de fragmentos de mesodermo de néurulas de anfibios. Si se transplantaba mesodermo de la región de los miembros anteriores, el receptor desarrollaba un miembro anterior supernumerario. Harrison observó que si bien el mesodermo tenía en esos embriones la apariencia de una capa uniforme, las células ya sabían de algún modo a qué parte del cuerpo pertenecían.

Tras Harrison numerosos investigadores establecieron con experimentos similares que el mesodermo constituye la capa celular crucial que especifica qué extremo del embrión es la cabeza y cuál es la cola. El mesodermo de la néurula de anfibios se cartografió o subdividió en campos morfogenéticos para varios órganos: branquias, balancines, miembros anteriores, miembros posteriores, cola, etc.

En 1923 Bridges y Morgan aislaron en Drosophila melanogaster un mutante con cuatro alas, llamado bithorax, demostrando así que las transformaciones homeóticas tenían una base genética. En 1948 Edward B. Lewis descubrió que las transformaciones homeóticas podían deberse a mutaciones en genes individuales, aun cuando se hubieran necesitados cientos de genes activos para desarrollar las alas y las patas en su ubicación anormal. Por consiguiente, era razonable suponer que las mutaciones afectaban a genes rectores que dirigían la actividad de varios genes subordinados.

Lewis descubrió que el par extra de ala en los mutantes era debido a la duplicación de un segmento del cuerpo, el segundo segmento torácico. La inactividad del primer gen del complejo bithorax en el segmento apropiado larvario hacía que otros genes homeóticos formaran alas en lugar de halterios.

A finales de la década de 1970 Nüsslein-Volhard y Wieschaus secuenciaron los genes homeóticos que controlan el desarrollo del cuerpo de la mosca de la fruta. Observaron que en cada uno de estos genes había una segmento de 180 pares de bases virtualmente idéntico. Esta secuencia proteica se une al ADN y activa el proceso de la transcripción. Mediante el control de la transcripción los genes homeóticos activan del crecimiento y desarrollo de las células.

En 1983 Gehring y William J. McGinnis descubrieron que el gen Antennapedia contenía una secuencia de ADN que se encontraba también en otro gen rector del desarrollo. Esta secuencia se utilizó como sonda para localizar otros genes que contuvieran la misma región aislando, de este modo, otros genes homeóticos. McGinnis descubrió que esta región conservada de ADN también se encuentra en otros invertebrados a la que se denominó homeobox o caja homeótica.

Lewis había observado en Drosophila que los genes homeóticos se encuentran ordenados en los cromosomas agrupados en complejos. Robb Krumlauf y Denis Duboule demostraron que estos genes están dispuestos en un orden preciso en el cromosoma y que este orden se corresponde con el lugar de expresión de los genes en el embrión. Los genes situados en un extremo se expresaban en las regiones anteriores del cuerpo mientras que los situados en el extremo opuesto lo hacían en la región posterior.

En 1995 Lewis, Nüsslein-Volhard y Wieschaus recibieron el premio Nobel por sus trabajos sobre los genes homeóticos.

Estructura y función de los genes homeóticos

Los genes homeóticos aparecen agrupados en complejos (clusters) y codifican proteínas reguladores que se unen al ADN. Todos ellos tienen una secuencia constante de 180 nucleótidos que en su conjunto se denomina caja homeótica (homeobox). Estas secuencias también se han encontrado en genes de segmentación y en otros que regulan el desarrollo espacial.

Estructura de una proteína con homeodominio. La hélice alfa 3 se une específicamente al ADN

Las proteínas que codifican estos genes tienen una región variable cuya secuencia de aminoácidos varía mucho de una especie a otra y una región altamente conservada a lo largo de la evolución en los organismos pluricelulares constituida por 60 aminoácidos y denominada homeodominio. Éste está codificado por la caja homeótica. Estas proteínas actúan como factores de transcripción y tienen la capacidad de unirse a secuencias reguladoras de otros genes como son los intensificadores o enhancers. Los homeodominios se estructuran en varios segmentos helicoidales, de los cuales uno de ellos, la hélice 3, se une al surco mayor del ADN.

Unión del homeodominio de la proteína Antennapedia a la molécula de ADN

Una característica importante de los genes homeóticos es su ligamiento físico. Suelen estar agrupados en el mismo cromosoma formando complejos. A lo largo de la evolución, estos genes han permanecido generalmente agrupados, ya que esta agrupación es esencial para el desarrollo. Estos genes muestran el fenómeno de la colinealidad espacial, es decir, que además de estar en el mismo cromosoma, su orden en el mismo corresponde al orden de expresión en el eje anteroposterior de animal. Los genes del extremo 5’ se expresan en la parte más posterior del animal, mientras que los del extremo 3’ lo hacen en la parte más anterior del animal. También existe una colinealidad temporal. En la mayoría de los animales, los genes de un extremo del complejo se activan en primer lugar y la expresión de los genes se inicia progresivamente a lo largo del complejo hasta que lo hacen los del extremo opuesto.

Los genes homeóticos se encuentran en todas las células del organismo pero sólo se manifiestan en determinadas regiones del embrión. Cuando en una determinada zona no se expresa un gen, las células embrionarias experimentan una transformación homeótica, debida a que lo hace otro gen homeótico activo en esas células y que puede reemplazarle con su propia información posicional. Esto sucede, por ejemplo, en la mutación bithorax de Drosophila. Las mutaciones que hacen que se exprese un gen homeótico en una posición incorrecta provocan también la aparición de transformaciones homeóticas. Así se originan la mutación antennapedia en las moscas adultas, cuando se activa este gen en la cabeza, lugar en el que este gen debe estar inactivo.

Genes Hox en diversos organismos modelo

Genes Hox en Drosophila melanogaster

Genes Hox en Caenorhabditis elegans

Genes Hox en Mus musculus

Bibliografía

De Robertis, E.M., Oliver, G. y Wright, C.V.E. (1996). «Genes con homeobox y el plan corporal de los vertebrados». Investigación y Ciencia. Temas 3. páginas 92-99. 

McGinnis, W. y Kuziora, M. (1996). «Arquitectos moleculares del diseño corporal». Investigación y Ciencia. Temas 3. páginas 112-118. 

Pierce, B. A. (2009). Genética. Un enfoque conceptual. Editorial Médica Panamericana.


Referencias

  1. Young T, Rowland JE, van de Ven C, et al. (octubre de 2009). «Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos». Dev. Cell 17 (4): 516-26. PMID 19853565. doi:10.1016/j.devcel.2009.08.010. 
  2. Theissen G (2001). «Development of floral organ identity: stories from the MADS house». Curr. Opin. Plant Biol. 4 (1): 75-85. PMID 11163172.