Diferencia entre revisiones de «Estructura MOS»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
TikiCR (discusión · contribs.)
Se agrega gráfica de capacitancia en función de tensión de compuerta
TikiCR (discusión · contribs.)
Referencias
Línea 1: Línea 1:
{{referencias}}
[[Archivo:Estructura-MOS.svg|thumb|300px|Estructura Metal-óxido-semiconductor construida con un sustrato de silicio tipo p (estructura PMOS).]]
[[Archivo:Estructura-MOS.svg|thumb|300px|Estructura Metal-óxido-semiconductor construida con un sustrato de silicio tipo p (estructura PMOS).]]
Una '''estructura MOS''' (''Metal-Oxide-Semiconductor'') es un dispositivo electrónico formado por un sustrato de [[silicio]] [[Dopaje (semiconductores)|dopado]], sobre el cual se hace crecer una capa de óxido. Los elementos se contactan con dos terminales metálicas llamadas sustrato y compuerta. La estructura se compara con un [[Condensador eléctrico|condensador]] de placas paralelas, en donde se reemplaza el [[dieléctrico]] por un material semiconductor y una capa de óxido.
Una '''estructura MOS''' (''Metal-Oxide-Semiconductor'') es un dispositivo electrónico formado por un sustrato de [[silicio]] [[Dopaje (semiconductores)|dopado]], sobre el cual se hace crecer una capa de óxido. Los elementos se contactan con dos terminales metálicas llamadas sustrato y compuerta. La estructura se compara con un [[Condensador eléctrico|condensador]] de placas paralelas, en donde se reemplaza el [[dieléctrico]] por un material semiconductor y una capa de óxido.
Línea 18: Línea 17:
:: <math>\psi_s</math> es la caída de tensión en el semiconductor
:: <math>\psi_s</math> es la caída de tensión en el semiconductor


[[Archivo:Capacitancia-MOS.svg|thumb|300px|Capacitancia normalizada de la estructura MOS en función de la tensión de compuerta<ref>El-Kareh, Badih. (2009). '''The MOS Structure'''. Silicon devices and process integration. Disponible en línea: http://www.springerlink.com/content/n5222m57557n17x7/ doi=10.1007/978-0-387-69010-0_4</ref>.]]En ambos tipos de estructuras se acumulan cargas eléctricas en el óxido y en el semiconductor, de modo que el dispositivo se comporta como un [[condensador eléctrico]]. Se distinguen tres regiones de funcionamiento, dependiendo del nivel de tensión que se aplica en la terminal de la compuerta.
[[Archivo:Capacitancia-MOS.svg|thumb|300px|Capacitancia normalizada de la estructura MOS en función de la tensión de compuerta.<ref>{{cita libro |autor=El-Kareh, Badih |year=2009 |title=Silicon Devices and Process Integration |chapter=The MOS Structure |publisher=Springer US |ISBN=978-0-387-69010-0 |url=http://www.springerlink.com/content/n5222m57557n17x7 |doi=10.1007/978-0-387-69010-0_4>}}</ref>]]
En ambos tipos de estructuras se acumulan cargas eléctricas en el óxido y en el semiconductor, de modo que el dispositivo se comporta como un [[condensador eléctrico]]. Se distinguen tres regiones de funcionamiento, dependiendo del nivel de tensión que se aplica en la terminal de la compuerta.


===Acumulación===
===Acumulación===

Revisión del 00:27 17 jun 2012

Estructura Metal-óxido-semiconductor construida con un sustrato de silicio tipo p (estructura PMOS).

Una estructura MOS (Metal-Oxide-Semiconductor) es un dispositivo electrónico formado por un sustrato de silicio dopado, sobre el cual se hace crecer una capa de óxido. Los elementos se contactan con dos terminales metálicas llamadas sustrato y compuerta. La estructura se compara con un condensador de placas paralelas, en donde se reemplaza el dieléctrico por un material semiconductor y una capa de óxido.

Funcionamiento

La estructura PMOS está formada por un sustrato de silicio dopado con huecos. Al aplicar un potencial de compuerta positivo, los electrones presentes en el sustrato (portadores minoritarios) son atraídos hacia la capa de óxido de compuerta. Al mismo tiempo, los huecos son repelidos de la capa de óxido de compuerta debido a que el potencial positivo los aleja. Esto ocasiona una acumulación de electrones en la cercanía del óxido, en donde el silicio presenta un exceso de electrones y por lo tanto es de tipo n. La inversión del dopado en el silicio (que antes era de tipo p) es lo que le da origen al nombre de esta región. También se produce una región de agotamiento de portadores en las cercanías del óxido, debido a que los huecos del sustrato se recombinan con los electrones atraídos.

De manera análoga, una estructura NMOS está formada por un sustrato de silicio dopado con electrones. Al aplicar un potencial de compuerta negativo, los huecos presentes en el sustrato (portadores minoritarios) son atraídos hacia la capa de óxido de compuerta. Los electrones son repelidos del óxido de compuerta debido a que el potencial negativo los aleja. Los huecos se acumulan en la cercanía del óxido, en donde el silicio acumula un exceso de huecos y por lo tanto se comporta como un material de tipo p. La recombinación de huecos y electrones produce una región de agotamiento.

La tensión positiva aplicada en la compuerta de una estructura PMOS se distribuye a través de las capas de materiales de acuerdo con la siguiente ecuación[1]

En donde
es la tensión de compuerta,
es la diferencia de las funciones de trabajo entre el metal y el semiconductor: ,
es la caída de tensión en el óxido,
es la caída de tensión en el semiconductor
Capacitancia normalizada de la estructura MOS en función de la tensión de compuerta.[2]

En ambos tipos de estructuras se acumulan cargas eléctricas en el óxido y en el semiconductor, de modo que el dispositivo se comporta como un condensador eléctrico. Se distinguen tres regiones de funcionamiento, dependiendo del nivel de tensión que se aplica en la terminal de la compuerta.

Acumulación

En la etapa de acumulación las cargas se almacenan en el óxido por el mismo principio de operación de un condensador, en donde el dieléctrico se polariza de forma proporcional al campo eléctrico aplicado.

Agotamiento

Al incrementar el potencial de compuerta, los electrones y los huecos se comienzan a recombinar en el semiconductor para formar la región de agotamiento.

Inversión

Si se continúa aumentando la tensión de compuerta, se logra la inversión del tipo de dopado del semiconductor.

Capacidad MOS

En un condensador de capacidad C, aparece una carga Q, dada por la expresión: Q=C·V, donde V es la tensión entre armaduras. En el condensador MOS, la tensión entre la puerta y el sustrato hace que adquiera la carga Q, que aparece a ambos lados del óxido. Pero en el caso del semiconductor esto significa que la concentración de portadores bajo la puerta varía en función de la tensión aplicada a ésta.

Imaginemos que tenemos el sustrato de silicio tipo p, es decir, conteniendo un exceso de huecos. Lo conectamos a 0 V, y tenemos la puerta también conectada a 0 V. En estas condiciones, no existe una variación en la concentración de huecos. Cuando vamos aumentando la tensión de puerta, el condensador se va cargando, con carga positiva en la parte de la puerta y negativa en el sustrato que, en nuestro caso de semiconductor p, significa que el número de huecos va disminuyendo hasta alcanzar la carga correspondiente a la tensión de puerta. Este modo de funcionamiento se llama deplexión, vaciamiento o empobrecimiento. Podemos continuar aumentando la tensión de puerta hasta que ya no queden huecos en la banda de conducción y el sustrato bajo la puerta se vuelve aislante.

Pero, si continuamos aumentando todavía más la tensión, el condensador MOS necesita más carga, que los huecos ya no pueden proporcionarle, por lo que aparecen electrones en la banda de conducción, a pesar de ser el sustrato tipo p. Este fenómeno se llama inversión y permite formar canales tipo n dentro de semiconductores p. Cuanto más aumentamos la tensión, mayor carga introducimos y más avanza la capa de inversión dentro del sustrato, con lo que la zona bajo la puerta se va haciendo cada vez más conductora.

Volvamos a poner la puerta a 0 V y vayamos polarizándola con valores negativos. Ahora la carga en el sustrato es positiva y el número de huecos aumenta, con lo que la conductividad, también. Este modo de funcionamiento se llama de acumulación o enriquecimiento, pues se aumenta el número de portadores.

Cargas en el óxido

La descripción anterior es teórica y no se ajusta al caso real, debido a que durante el proceso de fabricación diversas cargas quedan atrapadas en el óxido que forma la estructura MOS. Esta carga es independiente de la tensión que se aplique a la puerta, pero influye sobre el comportamiento de la estructura, ya que se debe polarizar la puerta para compensar esta carga antes de que el condensador MOS se comporte como se ha descrito en el párrafo anterior.

Estas cargas han sido un quebradero de cabeza para los diseñadores de circuitos integrados MOS, pues varían incontroladamente sus condiciones de funcionamiento. En circuitos digitales, se suaviza el problema usando tensiones de alimentación elevadas, que se han ido reduciendo al poder controlar mejor la cantidad de carga atrapada.

Modificando esta carga se varía la tensión a la que se produce la inversión, de forma que se tiene estructuras que a cero voltios tienen resistencia elevada, mientras que otras la tienen reducida.

Variaciones

Aunque el dióxido de silicio es un buen dieléctrico y se obtiene oxidando el sustrato, existen otras estructuras similares con otros aislantes, constituyendo la estructura MIS (Metal-Insulator-Semiconductor). También puede haber varias capas de dieléctricos diferentes, como en el caso de las celdas MIOS.

Aplicaciones

La estructura MOS es de gran importancia dentro de los dispositivos de estado sólido pues forma los transistores MOSFET, base de la electrónica digital actual. Pero, además, es el pilar fundamental de los dispositivos de carga acoplada, CCD, tan comunes en fotografía. Así mismo, funcionando como condensador es responsable de almacenar la carga correspondiente a los bits de las memorias dinámicas.

También se utilizan como condensadores de precisión en electrónica analógica y microondas.

Véase también

Referencias

  1. Berkeley University. The MOS Capacitor. Disponible en línea: http://www-inst.eecs.berkeley.edu/~ee130/sp03/lecture/lecture21.pdf
  2. El-Kareh, Badih (2009). «The MOS Structure». Silicon Devices and Process Integration. Springer US. ISBN 978-0-387-69010-0. doi:10.1007/978-0-387-69010-0_4>.