Vuelo espacial

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
El transbordador Atlantis tomando vuelo.

Un vuelo es la acción de volar, es decir, mantenerse suspendido en el aire. Sin embargo, este concepto no se aplica sólo a las aves, aviones y helicópteros. En astronáutica, el término vuelo también se refiere a los viajes que realizan los vehículos espaciales fuera de la atmósfera terrestre.

La tripulación de un vuelo espacial suele estar constituida por el comandante de la nave, el piloto y los especialistas de la misión, aunque se les podrán añadir especialistas de la carga útil. Todos ellos, salvo estos últimos, deberán ser astronautas.


Durante el vuelo, los astronautas pilotos llevan a cabo funciones de comandante de a bordo y de piloto de la nave, mientras que los especialistas de la misión son responsables de la coordinación de las operaciones en la nave, en lo que se refiere a experimentos y las cargas útiles para un determinado vuelo.

Alrededor de once semanas antes de la fecha prevista para el inicio del vuelo, la tripulación comienza una serie de simulaciones específicas para ese vuelo. El simulador de vuelo se encuentra conectado con el centro de control de la misión, así como a una red de estaciones de seguimiento.

Los astronautas deben aprender a trabajar en condiciones de microgravedad, y para ello se utilizan una serie de aviones modificados especialmente para el entrenamiento de los vuelos.

Fases[editar]

Lanzamiento[editar]

Saturno V en la plataforma de lanzamiento antes del lanzamiento de Apolo 4

Los cohetes son los únicos medios actualmente capaces de alcanzar la órbita o más allá. Todavía no se han construido otras tecnologías de lanzamiento espacial sin cohetes, o se mantienen a una velocidad orbital reducida. Un lanzamiento de cohetes para un vuelo espacial suele comenzar desde un espaciopuerto (cosmódromo), que puede estar equipado con complejos de lanzamiento y plataformas de lanzamiento para lanzamientos de cohetes verticales y pistas de despegue y aterrizaje de aviones portadores y naves espaciales aladas. Los vehículos espaciales se encuentran muy alejados de las viviendas humanas por razones de ruido y seguridad. Los ICBM tienen varias instalaciones de lanzamiento especiales.

Un lanzamiento a menudo se limita a ciertas ventanas de lanzamiento. Estas ventanas dependen de la posición de los cuerpos celestes y las órbitas en relación con el sitio de lanzamiento. La mayor influencia es a menudo la rotación de la propia Tierra. Una vez lanzadas, las órbitas se encuentran normalmente dentro de planos planos relativamente constantes en un ángulo fijo con respecto al eje de la Tierra, y la Tierra gira dentro de esta órbita.

Una plataforma de lanzamiento es una estructura fija diseñada para despachar vehículos aéreos. Generalmente consiste en una torre de lanzamiento y una zanja de fuego. Está rodeado de equipos utilizados para erigir, alimentar y mantener vehículos de lanzamiento.

Alcanzar el espacio[editar]

La definición más comúnmente usada del espacio exterior es todo más allá de la línea de Kármán, que está a 100 kilómetros (62 millas) sobre la superficie de la Tierra. A veces, los Estados Unidos definen el espacio ultraterrestre como todo a más de 50 millas (80 km) de altitud.

Los cohetes son los únicos medios actualmente prácticos de alcanzar el espacio. Los motores convencionales de los aviones no pueden alcanzar el espacio debido a la falta de oxígeno. Los motores de cohetes expulsan el propulsor para proporcionar empuje delantero que genera suficiente delta-v (cambio de velocidad) para alcanzar la órbita.

Para sistemas de lanzamiento tripulados, los sistemas de escape se instalan con frecuencia para permitir que los astronautas escapen en caso de emergencia.

Alternativas[editar]

Se han propuesto muchas maneras de alcanzar el espacio aparte de cohetes. Ideas tales como el ascensor espacial, y las correas de intercambio de impulso como rotovators o skyhooks requieren nuevos materiales mucho más fuerte que cualquiera actualmente conocido. Los lanzadores electromagnéticos tales como los lazos de lanzamiento podrían ser viables con la tecnología actual. Otras ideas incluyen aviones / espaciales de cohetes asistidos como Reaction Engines Skylon (actualmente en desarrollo de etapas tempranas), aviones espaciales con motor scramjet y aviones espaciales alimentados con RBCC. Lanzamiento de armas ha sido propuesto para la carga.

Dejando la órbita[editar]

Lanzado en 1959,Luna 1 fue el primer objeto creado por el hombre para lograr la velocidad de escape de la Tierra.[1] (Réplica en la foto)

Lograr una órbita cerrada no es esencial para los viajes lunares e interplanetarios. Los primeros vehículos espaciales rusos lograron con éxito alturas muy altas sin entrar en órbita. La NASA consideró el lanzamiento de misiones de Apolo directamente en las trayectorias lunares, pero adoptó la estrategia de entrar primero en una órbita de estacionamiento temporal y luego realizar una quema separada varias órbitas más tarde en una trayectoria lunar. Esto cuesta propulsor adicional debido a que el perigeo de la órbita de estacionamiento debe ser lo suficientemente alto como para evitar la reentrada mientras que la inyección directa puede tener un perigeo arbitrariamente bajo porque nunca se alcanzará.

Sin embargo, el enfoque de la órbita de aparcamiento simplificó en gran medida la planificación de la misión Apollo en varias formas importantes. Se amplió sustancialmente las ventanas de lanzamiento admisibles, aumentando las posibilidades de un lanzamiento exitoso a pesar de los problemas técnicos menores durante la cuenta atrás. La órbita de estacionamiento era una "meseta de la misión" estable que dio a la tripulación ya los controladores varias horas para examinar a fondo la nave espacial después de las tensiones del lanzamiento antes de confiarlo a un vuelo lunar largo; La tripulación podría regresar rápidamente a la Tierra, si fuera necesario, o podría realizarse una misión alternativa de órbita terrestre. La órbita de estacionamiento también permitió trayectorias translunares que evitaban las partes más densas de las correas de radiación de Van Allen.

Las misiones Apollo minimizaron la penalización de rendimiento de la órbita de aparcamiento manteniendo su altitud tan baja como sea posible. Por ejemplo, el Apolo 15 usó una órbita de estacionamiento inusualmente baja (incluso para Apolo) de 92.5 nmi por 91.5 nmi (171km por 169km) donde había un arrastre atmosférico significativo. Pero fue parcialmente superado por la ventilación continua de hidrógeno de la tercera etapa del Saturno V, y fue en cualquier caso tolerable para la corta estancia.

Las misiones robóticas no requieren una capacidad de anulación o minimización de la radiación, y debido a que los lanzadores modernos rutinariamente se encuentran con ventanas de lanzamiento "instantáneas", las sondas espaciales a la Luna y otros planetas usan inyección directa para maximizar el rendimiento. Aunque algunos pueden navegar brevemente durante la secuencia de lanzamiento, no completan una o más órbitas de estacionamiento completo antes de la quemadura que los inyecta en una trayectoria de escape de la Tierra.

Tenga en cuenta que la velocidad de escape de un cuerpo celeste disminuye con la altitud por encima de ese cuerpo. Sin embargo, es más eficiente en el consumo de combustible para una embarcación para quemar su combustible tan cerca del suelo como sea posible; Véase el efecto de Oberth y la referencia. Esta es otra manera de explicar la penalización de rendimiento asociada con el establecimiento del perigeo seguro de una órbita de estacionamiento.

Los planes para futuras misiones de vuelo espacial interplanetario con tripulación incluyen a menudo el montaje final del vehículo en órbita terrestre, como el Proyecto Orión de la NASA y el tándem Kliper / Parom de Rusia.

Astrodinámica[editar]

La astrodinamica es el estudio de trayectorias de la nave espacial, particularmente en lo que se refiere a los efectos de la gravitación y la propulsión. La astrodinamica permite que una nave espacial llegue a su destino en el momento correcto sin el uso excesivo de propelente. Puede ser necesario un sistema de maniobra orbital para mantener o cambiar las órbitas.

Los métodos de propulsión orbital no-cohete incluyen velas solares, velas magnéticas, sistemas magnéticos de burbujas de plasma, y ​​el uso de efectos de eslinga gravitacional.

Rastro de gas ionizado de la reentrada de Shuttle
Recuperación de la cápsula de retorno de Discoverer 14 por un avión C-119

Transferencia de energía[editar]

El término "energía de transferencia" significa la cantidad total de energía impartida por una etapa de cohete a su carga útil. Esto puede ser la energía impartida por una primera etapa de un vehículo de lanzamiento a una etapa superior más la carga útil, o por una etapa superior o el motor del retroceso de la nave espacial a una nave espacial.

Reentrada[editar]

Los vehículos en órbita tienen grandes cantidades de energía cinética. Esta energía debe ser desechada si el vehículo aterriza de forma segura sin vaporizarse en la atmósfera. Normalmente este proceso requiere métodos especiales para protegerse contra el calentamiento aerodinámico. La teoría detrás de la reentrada fue desarrollada por Harry Julian Allen. De acuerdo con esta teoría, los vehículos de reentrada presentan formas contundentes a la atmósfera para la reentrada. Las formas contundentes significan que menos del 1% de la energía cinética termina como el calor que llega al vehículo y la energía térmica en su lugar termina en la atmósfera.

Aterrizaje[editar]

Las cápsulas de Mercury, Gemini y Apollo salpicadas en el mar. Estas cápsulas fueron diseñadas para aterrizar a velocidades relativamente bajas con la ayuda de un paracaídas. Las cápsulas rusas para Soyuz hacen uso de un gran paracaídas y cohetes de frenado para tocar tierra. El transbordador espacial se deslizó a un aterrizaje como un avión.

Recuperación[editar]

Después de un aterrizaje con éxito la nave espacial, sus ocupantes y la carga se pueden recuperar. En algunos casos, la recuperación se ha producido antes del aterrizaje: mientras una nave espacial sigue descendiendo sobre su paracaídas, puede ser atrapada por un avión especialmente diseñado. Esta técnica de recuperación de aire se utilizó para recuperar los recipientes de película de los satélites espía Corona.

Véase también[editar]

Referencias[editar]

  1. «NASA - NSSDC - Spacecraft - Details». Nssdc.gsfc.nasa.gov. Consultado el 5 de noviembre de 2013.