Velocidad de flujo

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda

En Mecánica del medio continuo la velocidad macroscópica, también velocidad de flujo en fluidodinámica o Velocidad de deriva en electromagnetismo, es un Campo vectorial utilizado para describir matemáticamente el movimiento de un medio continuo.[1][2]​ La longitud del vector de velocidad del flujo es la velocidad de flujo y es un escalar.

Definición[editar]

La velocidad de flujo u de un fluido es un campo de vector

lo que da la  velocidad de una Parcela de fluido en una posición x y tiempo t .


La velocidad de flujo q es la longitud del vector de velocidad del flujo[3]

Y es un campo escalar.

Usos[editar]

La velocidad de flujo de un fluido describe efectivamente todo sobre el movimiento de un fluido. Muchas propiedades físicas de un fluido pueden ser expresadas matemáticamente en términos de la velocidad del flujo. Algunos ejemplos comunes son:

Flujo constante[editar]

Se dice que el flujo de un fluido es constante si u no varía con el tiempo. Esto es sí

Flujo incompresible[editar]

Si un fluido es incompresible la divergencia de u es cero:

Es decir, si u es un Campo solenoidal.

Flujo irrotacional[editar]

Un flujo es irrotacional si el Rotacional de u es cero:

Es decir, si u es un campo de vector irrotacional.

Un flujo en un Conjunto simplemente conexo qué es irrotacional puede ser descrito como flujo potencial, a través del uso de un potencial de velocidad , con , si el flujo es irrotacional e incompressible, el Laplaciano del potencial de velocidad tiene que ser cero:


Vorticidad[editar]

La vorticidad , de un flujo puede definirse en términos de su velocidad de flujo por

Así, en el flujo irrotacional, la vorticidad es cero.


El potencial de velocidad[editar]

Si un flujo irrotacional ocupa un Conjunto simplemente conexo entonces allí existe un campo escalar tal que


El Campo escalar  se denomina el potencial de velocidad para el flujo. (Ve campo de vector Irrotacional.)

Referencias[editar]

  1. Wiley-Interscience Publications, ed. (1979). «Chapter 4:The derivation of continuum description from transport equations». Transport theory. New York. p. 218. ISBN 978-0471044925. 
  2. Freidberg, Jeffrey P. (2008). «Chapter 10:A self-consistent two-fluid model». Cambridge University Press, ed. Plasma Physics and Fusion Energy (1 edición). Cambridge. p. 225. ISBN 978-0521733175. 
  3. Courant, R.; Friedrichs, K.O. (1999). Supersonic Flow and Shock Waves (5th edición). Springer-Verlag New York Inc. p. 24. ISBN 0387902325. OCLC 44071435.