Transformada de Hilbert

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
La transformada de Hilbert (en rojo) de una onda cuadrada (en azul).

En matemáticas y en procesamiento de señales, la transformada de Hilbert \mathcal{H}, de una función real, s(t)\,, se obtiene mediante la convolución de las señales s(t) y 1/(\pi t) obteniendo \widehat s(t). Por lo tanto, la transformada de Hilbert \widehat s(t) se puede interpretar como la salida de un sistema LTI con entrada s(t) y respuesta al impulso 1/(\pi t).

Aplicaciones[editar]

Es una herramienta matemática útil para describir la envolvente compleja de una señal modulada por una portadora real. Su definición es:

\widehat s(t) = \mathcal{H}\{s\}(t) = (h*s)(t) = \frac{1}{\pi}\int_{-\infty}^{\infty}\frac{s(\tau)}{t-\tau}\, d\tau.\,

donde \scriptstyle h(t) = 1/\pi t y considerando la integral como el valor principal (lo que evita la singularidad \tau = t\,).

Utilizando \widehat s(t) podemos construir la señal analítica de s(t) como:

 s_a(t) = s(t) + i \widehat s(t)

La transformada de Hilbert posee una respuesta en frecuencia dada por la transformada de Fourier:

H(\omega ) = \mathcal{F}\{h\}(\omega)\, = \begin{cases}+j\,  & \mbox{si } \omega < 0\,  \\-j\,  & \mbox{si }  \omega > 0\,\end{cases}

o, de manera equivalente:

H(\omega ) = \mathcal{F}\{h\}(\omega)\, = -j\cdot \sgn(\omega)

j\, (o también i\,) es la unidad imaginaria

Y como:

\mathcal{F}\{\widehat s\}(\omega) = H(\omega )\cdot \mathcal{F}\{s\}(\omega),

la transformada de Hilbert produce el efecto de desplazar la componente de frecuencias negativas de s(t)\, +90° y las parte de frecuencias positivas −90°.

También tenemos que H^2(\omega ) = -1\,, por lo que multiplicando la ecuación anterior por -H(\omega )\,, obtenemos:

\mathcal{F}\{s\}(\omega) = -H(\omega )\cdot \mathcal{F}\{\widehat s\}(\omega)

de donde obtenemos la transformada inversa de Hilbert:

s(t) = -(h * \widehat s)(t) = -\mathcal{H}\{\widehat s\}(t).\,

Ejemplos de transformadas[editar]

Señal
s(t)\,
Transformada de Hilbert
\mathcal{H}\{s\}(t)
\sin(t)\, -\cos(t)\,
\cos(t)\, \sin(t)\,
1 \over t^2 + 1 t \over t^2 + 1
\sin(t) \over t
Función sinc
1 - \cos(t) \over t
\sqcap(t)
función rectángulo
{1 \over \pi} \ln \left | {t+{1 \over 2} \over t-{1 \over 2}} \right |
\delta(t)
Función delta de Dirac
 {1 \over \pi t}

Enlaces externos[editar]