Teorema geométrico de Euler

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda

En geometría, el teorema de Euler establece que la distancia d entre el circuncentro y el incentro de un triángulo, cumple la relación siguiente:[1][2][3][4]

o de forma equivalente

donde R y r denotan el circunradio y el inradio (los radios de la circunferencia circunscrita y de la circunferencia inscrita respectivamente).

El teorema recibe su nombre en memoria de Leonhard Euler, quien lo publicó en 1767,[5]​ aunque el mismo resultado ya había sido dado a conocer por William Chapple en 1746.[6]

Del teorema se deduce la Desigualdad de Euler:[2][3]

que se convierte en una igualdad solo en el caso del triángulo equilátero.[7]:p. 198

Demostración[editar]

Demostración del Teorema Geométrico de Euler
Demostración del Teorema Geométrico de Euler

Siendo O el circuncentro de triángulo ABC, e I su incentro, la extensión de AI cruza la circunferencia circunscrita en L. Entonces, L es el punto medio del arco BC. Se unen LO y se extiende hasta cruzar la circunferencia circunscrita en M. Se construye ahora una perpendicular a AB, desde I, siendo D su pie, así que ID = r. No es difícil de probar que el triángulo ADI es similar al triángulo MBL, así que ID / BL = AI / ML; y por lo tanto ID × ML = AI × BL. En consecuencia, 2Rr = AI × BL. Únase BI. Debido a que

BIL = ∠ A / 2 + ∠ ABC / 2,
IBL = ∠ ABC / 2 + ∠ CBL = ∠ ABC / 2 + ∠ A / 2,

se tiene que ∠ BIL = ∠ IBL, y así BL = IL, y AI × IL = 2 Rr. Extendiendo OI de modo que cruce la circunferencia circunscrita en P y Q; entonces PI × QI = AI × IL = 2Rr, así que (R + d)(Rd) = 2Rr, entonces d2 = R(R - 2r).

Versión fuerte de la desigualdad[editar]

Una versión más fuerte es[7]:p. 198

Véase también[editar]

Referencias[editar]

  1. Johnson, Roger A. (2007) [1929], Advanced Euclidean Geometry, Dover Publ., p. 186 .
  2. a b Alsina, Claudi; Nelsen, Roger (2009), When Less is More: Visualizing Basic Inequalities, Dolciani Mathematical Expositions 36, Mathematical Association of America, p. 56, ISBN 9780883853429 .
  3. a b Debnath, Lokenath (2010), The Legacy of Leonhard Euler: A Tricentennial Tribute, World Scientific, p. 124, ISBN 9781848165250 .
  4. Dunham, William (2007), The Genius of Euler: Reflections on his Life and Work, Spectrum Series 2, Mathematical Association of America, p. 300, ISBN 9780883855584 .
  5. Euler, Leonhard (1767), «Solutio facilis problematum quorumdam geometricorum difficillimorum», Novi Commentarii academiae scientiarum Petropolitanae (en latin) 11: 103-123 .
  6. Chapple, William (1746), «An essay on the properties of triangles inscribed in and circumscribed about two given circles», Miscellanea Curiosa Mathematica 4: 117-124 .
  7. a b Svrtan, Dragutin; Veljan, Darko (2012), «Non-Euclidean versions of some classical triangle inequalities», Forum Geometricorum 12: 197-209 .