Teorema de Bayes

De Wikipedia, la enciclopedia libre
Ir a la navegación Ir a la búsqueda
Un letrero de neón que muestra el enunciado del teorema de Bayes

El teorema de Bayes, en la teoría de la probabilidad, es una proposición planteada por el matemático inglés Thomas Bayes (1702-1761)[1]​ y publicada póstumamente en 1763,[2]​ que expresa la probabilidad condicional de un evento aleatorio dado en términos de la distribución de probabilidad condicional del evento dado y la distribución de probabilidad marginal de solo .

En términos más generales y menos matemáticos, el teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de dado con la probabilidad de dado . Es decir, por ejemplo, que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber (si se tiene algún dato más), la probabilidad de tener gripe si se tiene un dolor de cabeza. Muestra este sencillo ejemplo la alta relevancia del teorema en cuestión para la ciencia en todas sus ramas, puesto que tiene vinculación íntima con la comprensión de la probabilidad de aspectos causales dados los efectos observados.

Teorema[editar]

Sea un conjunto de sucesos mutuamente excluyentes y exhaustivos tales que la probabilidad de cada uno de ellos es distinta de cero . Si es un suceso cualquiera del que se conocen las probabilidades condicionales entonces la probabilidad viene dada por la expresión:

donde:

  • son las probabilidades a priori,
  • es la probabilidad de en la hipótesis ,
  • son las probabilidades a posteriori.

Fórmula de Bayes[editar]

La visualización del teorema de Bayes por la superposición de dos árboles de decisión

Con base en la definición de probabilidad condicionada se obtiene la Fórmula de Bayes, también conocida como Regla de Bayes:

Esta fórmula nos permite calcular la probabilidad condicional de cualquiera de los eventos dado . La fórmula «ha originado muchas especulaciones filosóficas y controversias».[3]

Aplicaciones[editar]

El teorema de Bayes es válido en todas las aplicaciones de la teoría de la probabilidad. Sin embargo, hay una controversia sobre el tipo de probabilidades que emplea. En esencia, los seguidores de la estadística tradicional solo admiten probabilidades basadas en experimentos repetibles y que tengan una confirmación empírica mientras que los llamados estadísticos bayesianos permiten probabilidades subjetivas. El teorema puede servir entonces para indicar cómo debemos modificar nuestras probabilidades subjetivas cuando recibimos información adicional de un experimento. La estadística bayesiana está demostrando su utilidad en ciertas estimaciones basadas en el conocimiento subjetivo a priori y el hecho de permitir revisar esas estimaciones en función de la evidencia empírica es lo que está abriendo nuevas formas de hacer conocimiento. Una aplicación de esto son los clasificadores bayesianos que son frecuentemente usados en implementaciones de filtros de correo basura o spam, que se adaptan con el uso. Otra aplicación se encuentra en la fusión de datos, combinando información expresada en términos de densidad de probabilidad proveniente de distintos sensores.

Como observación, se obtiene la siguiente fórmula y su demostración resulta trivial.

Como aplicaciones puntuales:

  1. El diagnóstico de cáncer.
  2. Evaluación de probabilidades durante el desarrollo de un juego de bridge por Dan F. Waugh y Frederick V. Waugh.
  3. Probabilidades a priori y a posteriori.
  4. Un uso controvertido en la Ley de sucesión de Laplace.[3]
  5. En el testeo de hipótesis en Ciencia Política cuando se usa metodología process tracing.

Uso en genética[editar]

En genética, el teorema de Bayes puede utilizarse para calcular la probabilidad de que un individuo tenga un genotipo específico. Muchas personas buscan aproximar sus posibilidades de estar afectadas por una enfermedad genética o su probabilidad de ser portadoras de un gen recesivo de interés. Se puede realizar un análisis bayesiano basado en los antecedentes familiares o en las pruebas genéticas, con el fin de predecir si un individuo desarrollará una enfermedad o la transmitirá a sus hijos. Las pruebas y la predicción genéticas son una práctica habitual entre las parejas que planean tener hijos pero que están preocupadas por la posibilidad de que ambos sean portadores de una enfermedad, especialmente en comunidades con baja varianza genética. [4]

El primer paso del análisis bayesiano para la genética es proponer hipótesis mutuamente excluyentes: para un alelo específico, un individuo es o no es portador. A continuación, se calculan cuatro probabilidades: Probabilidad Previa (la probabilidad de cada hipótesis teniendo en cuenta información como los antecedentes familiares o las predicciones basadas en la Herencia Mendeliana), Probabilidad Condicional (de un determinado resultado), Probabilidad Conjunta (producto de las dos primeras) y Probabilidad Posterior (un producto ponderado que se calcula dividiendo la Probabilidad Conjunta de cada hipótesis por la suma de ambas probabilidades conjuntas).

Véase también[editar]

Enlaces externos[editar]

Referencias[editar]

  1. Diccionarios Oxford-Complutense. Matemáticas de Christopher Clapham 84-89784-566
  2. Bayes, Thomas (1763). «An Essay towards solving a Problem in the Doctrine of Chances.». Philosophical Transactions of the Royal Society of London 53: 370-418. doi:10.1098/rstl.1763.0053. 
  3. a b Parzen, Emanuel. Teoría moderna de probabilidades y sus aplicaciones. Limusa Grupo Noriega Editores. ISBN 978-9681-807351. 
  4. Kraft, Stephanie A.; Duenas, Devan; Wilfond, Benjamin S.; Goddard, Katrina A.B. (de abril de 2019). «The evolving landscape of expanded carrier screening: challenges and opportunities». Genetics in Medicine 21 (4): 790-797. PMID 30245516. doi:10.1038/s41436-018-0273-4. 

Bibliografía adicional[editar]

  • Grunau, Hans-Christoph (24 January 2014). "Preface Issue 3/4-2013". Jahresbericht der Deutschen Mathematiker-Vereinigung. 115 (3–4): 127–128. doi:10.1365/s13291-013-0077-z.
  • Gelman, A, Carlin, JB, Stern, HS, and Rubin, DB (2003), "Bayesian Data Analysis," Second Edition, CRC Press.
  • Grinstead, CM and Snell, JL (1997), "Introduction to Probability (2nd edition)," American Mathematical Society (free pdf available) [1].
  • "Bayes formula", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • McGrayne, SB (2011). The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines & Emerged Triumphant from Two Centuries of Controversy. Yale University Press. ISBN 978-0-300-18822-6.
  • Laplace, Pierre Simon (1986). "Memoir on the Probability of the Causes of Events". Statistical Science. 1 (3): 364–378. doi:10.1214/ss/1177013621. JSTOR 2245476.
  • Lee, Peter M (2012), "Bayesian Statistics: An Introduction," 4th edition. Wiley. ISBN 978-1-118-33257-3.
  • Puga JL, Krzywinski M, Altman N (31 March 2015). "Bayes' theorem". Nature Methods. 12 (4): 277–278. doi:10.1038/nmeth.3335. PMID 26005726.
  • Rosenthal, Jeffrey S (2005), "Struck by Lightning: The Curious World of Probabilities". HarperCollins. (Granta, 2008. ISBN 9781862079960).
  • Stigler, Stephen M. (August 1986). "Laplace's 1774 Memoir on Inverse Probability". Statistical Science. 1 (3): 359–363. doi:10.1214/ss/1177013620.
  • Stone, JV (2013), download chapter 1 of "Bayes' Rule: A Tutorial Introduction to Bayesian Analysis", Sebtel Press, England.
  • Bayesian Reasoning for Intelligent People, An introduction and tutorial to the use of Bayes' theorem in statistics and cognitive science.
  • Morris, Dan (2016), Read first 6 chapters for free of "Bayes' Theorem Examples: A Visual Introduction For Beginners" Blue Windmill ISBN 978-1549761744. A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A).