Supercomputadora

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Interior de una supercomputadora CRAY T3D.

Una supercomputadora o un superordenador es aquella con capacidades de cálculo muy superiores a las computadoras comunes y de escritorio y que son usadas con fines específicos. Hoy día los términos de supercomputadora y superordenador están siendo reemplazados por computadora de alto rendimiento y ambiente de cómputo de alto rendimiento, ya que las supercomputadoras son un conjunto de poderosos ordenadores unidos entre sí para aumentar su potencia de trabajo y rendimiento. Al año 2011, los superordenadores más rápidos funcionaban en aproximadamente más de 1 petaflops (que en la jerga de la computación significa que realizan más de 1000 billones de operaciones por segundo). La lista de supercomputadoras se encuentra en la lista TOP500.

Historia[editar]

Las supercomputadoras fueron introducidas en la década de 1970 y fueron diseñadas principalmente por Seymour Cray en la compañía Control Data Corporation (CDC), la cual dominó el mercado durante esa época, hasta que Cray dejó CDC para formar su propia empresa, Cray Research. Con esta nueva empresa siguió dominando el mercado con sus nuevos diseños, obteniendo el podio más alto en supercómputo durante cinco años consecutivos (1985-1990). En los años ochenta un gran número de empresas competidoras entraron al mercado en paralelo con la creación del mercado de los minicomputadores una década antes, pero muchas de ellas desaparecieron a mediados de los años noventa. El término está en constante flujo. Las supercomputadoras de hoy tienden a convertirse en las computadoras ordinarias del mañana. Las primeras máquinas de CDC fueron simplemente procesadores escalares muy rápidas, y muchos de los nuevos competidores desarrollaron sus propios procesadores escalares a un bajo precio para poder penetrar en el mercado.

De principio a mediados de los años ochenta se vieron máquinas con un modesto número de procesadores vectoriales trabajando en paralelo, lo cual se convirtió en un estándar. El número típico de procesadores estaba en el rango de 4 a 16. En la última parte de los años ochenta y principios de los noventa, la atención cambió de procesadores vectoriales a sistemas de procesadores masivamente paralelos con miles de CPU «ordinarios». En la actualidad, diseños paralelos están basados en microprocesadores de clase servidor que están disponibles actualmente (2011). Ejemplos de tales procesadores son PowerPC, Opteron o Xeon, y la mayoría de los superordenadores modernos son hoy en día clústeres de computadores altamente afinadas usando procesadores comunes combinados con interconexiones especiales.

Hasta ahora el uso y generación de las mismas se ha limitado a organismos militares, gubernamentales, académicos o empresariales.

Estas se usan para tareas de cálculos intensivos, tales como problemas que involucran física cuántica, predicción del clima, investigación de cambio climático, modelado de moléculas, simulaciones físicas tal como la simulación de aviones o automóviles en el viento (también conocido como Computational Fluid Dinamics), simulación de la detonación de armas nucleares e investigación en la fusión nuclear.

Como ejemplo, se encuentra la supercomputadora IBM Roadrunner; científicos de IBM y del laboratorio de Los Álamos trabajaron seis años en la tecnología de la computadora. Algunos elementos de Roadrunner tienen como antecedentes videojuegos populares, de acuerdo con David Turek, vicepresidente del programa de supercomputadoras de IBM. «En cierta forma, se trata de una versión superior de Sony PlayStation 3», indicó. «Tomamos el diseño básico del chip (de PlayStation) y mejoramos su capacidad», informó Turek.

Sin embargo, Roadrunner difícilmente pueda asemejarse a un videojuego. El sistema de interconexión ocupa 557 m² de espacio. Cuenta con 91,7 km de fibra óptica y pesa 226,8 t . La supercomputadora está en el laboratorio de investigaciones de IBM en Poughkeepsie, Nueva York y fue trasladada en julio del 2008 al Laboratorio Nacional Los Álamos, en Nuevo México.[[m]]

Japón creó la primera supercomputadora petaflops la MDGrape-3, pero solo de propósitos particulares, luego IBM de USA creo la correcaminos, también de 1 petaflops, China la Milky Way One de 1,2 petaflops y Cray de EE.UU. la Jaguar de 1,7 ó 1,8 petaflop, que es al final del año 2009 la más rápida. La supercomputadora más rápida a fines del 2010 era la china Tianhe 1A con máximas de velocidad de 2,5 petaflops.

Sistemas de enfriamiento[editar]

Muchas de las CPUs usadas en los supercomputadores de hoy disipan 10 veces más calor que un disco de estufa común . Algunos diseños necesitan enfriar los múltiples CPUs a -85 °C (-185 °F).

Para poder enfriar múltiples CPUs a tales temperaturas requiere de un gran consumo de energía. Por ejemplo, un nuevo supercomputador llamado Aquasar tendrá una velocidad tope de 10 teraflops. Mientras tanto el consumo de energía de un solo rack de este supercomputador consume cerca de 10 kW. Como comparación, un rack del supercomputador Blue Gene L/P consume alrededor de 40 kW.

El consumo promedio de un supercomputador dentro de la lista de los 500 supercomputadores más rápidos del mundo es de alrededor de 257 kW.

Para el supercomputador Aquasar, que será instalado en el Instituto Tecnológico Federal Suizo (ETH), se utilizará un nuevo diseño de enfriamiento líquido. Se necesitarán 10 litros de agua que fluirán a una tasa de 29,5 litros por minuto.

Una de las innovaciones en este diseño es que normalmente los sistemas de enfriamiento aíslan el líquido de la CPU y la transmisión de calor se da a través de convección desde la cubierta metálica de la CPU a través de un adaptador generalmente de cobre u otro material térmicamente conductivo. La innovación consiste en un nuevo diseño en el cual llega el agua directamente a la CPU mediante tubos capilares de manera que la transmisión de calor es más eficiente.

En el caso del ETH en Suiza, el calor extraído del supercomputador será reciclado para calentar habitaciones dentro de la misma universidad.

Características[editar]

Las principales son:

  • Velocidad de procesamiento: miles de millones de instrucciones de coma flotante por segundo.
  • Usuarios a la vez: hasta miles, en entorno de redes amplias.
  • Tamaño: requieren instalaciones especiales y aire acondicionado industrial.
  • Dificultad de uso: solo para especialistas.
  • Clientes usuales: grandes centros de investigación.
  • Penetración social: prácticamente nula.
  • Impacto social: muy importante en el ámbito de la investigación, ya que provee cálculos a alta velocidad de procesamiento, permitiendo, por ejemplo, calcular en secuencia el genoma humano, número π, desarrollar cálculos de problemas físicos dejando un margen de error muy bajo, etc.
  • Parques instalados: menos de un millar en todo el mundo.
  • Hardware : Principal funcionamiento operativo

Principales usos[editar]

Las supercomputadoras se utilizan para abordar problemas muy complejos o que no pueden realizarse en el mundo físico bien, ya sea porque son peligrosos, involucran cosas increíblemente pequeñas o increíblemente grandes. A continuación damos algunos ejemplos:

  • Mediante el uso de supercomputadoras, los investigadores modelan el clima pasado y el clima actual y predicen el clima futuro .
  • Los astrónomos y los científicos del espacio utilizan las supercomputadoras para estudiar el Sol y el clima espacial.
  • Los científicos usan supercomputadoras para simular de qué manera un tsunami podría afectar una determinada costa o ciudad.
  • Las supercomputadoras se utilizan para simular explosiones de supernovas en el espacio.
  • Las supercomputadoras se utilizan para probar la aerodinámica de los más recientes aviones militares.
  • Las supercomputadoras se están utilizando para modelar cómo se doblan las proteínas y cómo ese plegamiento puede afectar a la gente que sufre la enfermedad de Alzheimer, la fibrosis quística y muchos tipos de cáncer.
  • Las supercomputadoras se utilizan para modelar explosiones nucleares, limitando la necesidad de verdaderas pruebas nucleares.

Sistemas operativos[editar]

Primeros SO que se utilizaron en los supercomputadores[editar]

Las primeras supercomputadoras que hubo en la historia, no disponían de un sistema operativo incorporado, con lo cual cada sede, laboratorio, etc. que utilizaba uno de estos supercomputadores se hacía cargo de tener que desarrollar un SO en concreto y a la medida de su supercomputador. Por ejemplo, el considerado primer supercomputador de la historia, el CDC 6600, utilizó el sistema operativo llamado Chippewa (COS, que también es nombrado como sistema operativo Cray). Este sistema operativo era bastante simple y su característica principal consistía en poder controlar las diferentes tareas del sistema informático, de esta manera se conseguía que las diferentes tareas siempre dispusieran de lo que requerían para llevar a término su fin. A raíz de este sistema operativo surgieron nuevos, como por ejemplo los llamados Kronos, Scope o Nos.

El sistema operativo Kronos fue implantado durante la década de los 70 y su característica principal es que las diferentes tareas puedan acceder al mismo tiempo a algo que requerían varias para llevar a cabo su faena. El sistema operativo Scope (Supervisory Control Of Program Execution) fue utilizado durante la década de los 60, su característica principal es que permite tener controladas todas las tareas del sistema.

El sistema operativo Nos (Network Operating System) se puede decir que fue el que sustituyó a los dos anteriores durante la década de los 70, sus características eran muy similares al de su predecesor Kronos, pero lo que se buscaba concretamente con Nos era tener un sistema operativo común en todas las creaciones de CDC (Control Data Corporation) que había. En la década de los 80, Nos fue sustituido por Nos/Ve (Network Operating System/ Virtual Environment), que a diferencia de su predecesor disponía de una memoria virtual. A finales de la década de los 80 se comenzaron a implantar en los supercomputadoras los llamados sistemas operativos modernos o los que han sido la base de los actuales, los sistemas operativos basados en UNIX. Los primeros fueron los llamados UNICOS, que fueron los que surgieron con fuerza durante esa década.

Evolución del porcentaje de uso de los SO en supercomputadores[editar]

Junio 1993

Como se ha mencionado en el punto anterior, los primeros sistemas operativos que tienen incorporados los supercomputadores eran desarrollados a la medida y específicamente para cada uno de ellos, siendo por ejemplo Chippewa, Kronos, Scope o Nos algunos de ellos. Pero a finales de los 80 comienza a haber un cambio significativo y los supercomputadores comienzan a decantarse por los sistemas operativos basados en UNIX como UNICOS. En 1993 se comienzan a hacer la lista de los primeros 500 supercomputadores del mundo y en la que se especifica qué sistemas operativos utilizan cada uno. A partir de esta lista se pudo comenzar a hacer una estimación de la evolución de los sistemas operativos en ellos.

  • Junio 1993

El primer año que se realizó la lista del Top 500, Unix y UNICOS (basado en Unix) eran utilizados por más del 50% de las supercomputadoras, concretamente el 56,4%. Por lo tanto a principios de la década de los 90, se puede decir que los sistemas operativos que predominaban se basan en Unix.

  • Junio 2000

El siguiente año en el que hay un gran cambio es el 2000, porque es cuando Linux, que como veremos más adelante es el SO principal en las supercomputadoras en la actualidad, comienza a hacerse un hueco en el mundo de la supercomputación. En el año 2000 los sistemas basados en Unix siguen dominando, ya que los 5 primeros, AIX, Solaris, UNICOS, HP Unix y IRIX se basan en este ocupando simplemente entre ellos el 80,6% del porcentaje total, habiendo aun otros sistemas que en menores porcentajes utilizan también Unix. Como hecho destacable podemos ver que UNICOS que a principios de la década era el dominador ya no lo es y pasa a serlo AIX.

  • Junio 2003

El siguiente año significativo es el 2003, y por un hecho en concreto y es que Linux pasa a colocarse el primero de la lista, aunque los sistemas basados en Unix siguen predominando en el total.

  • Junio 2005
Junio 2015

La siguiente fecha significativa es el año 2005, este año Linux por sí solo ya domina todo el sector de la supercomputación con un 62,4%, con lo cual el cambio de tendencia de sistemas Unix a Linux se ha confirmado. Como información a tener en cuenta, Hans Werner Meuer (profesor de ciencias informáticas en la Universidad de Mannheim, Alemania) encargado de hacer la lista comentó que aunque está seguro del dominio de Linux en el sector de la supercomputación, no se podía asegurar que los datos de la lista fueran 100% fiables y que es más bien una estimación, ya que muchos de los sitios donde se utilizan supercomputadores se negaban a proporcionar la información sobre que SO tenían.

  • Junio 2012

El año 2012 es cuando Linux alcanza su tope hasta el día de hoy con un porcentaje del 83,8%, habiendo además ya otros sistemas que también están basados en Linux.

  • Junio 2015

La última lista hecha del top 500, muestra como los sistemas basados en Linux dominan totalmente el sector de la supercomputación en la actualidad con un 97,2%, concretamente 486 de los 500 supercomputadores lo utilizan. El otro 2,7% restante está conformado básicamente por sistemas UNIX. Como dato interesante, Windows o Mac OS tienen un porcentaje prácticamente nulo en el sector de la supercomputación.

Motivo de este cambio, que SO predomina actualmente y por qué[editar]

Ha habido un par de cambios claves en el mundo de los sistemas operativos que se usan en la supercomputación. El primero de ellos fue durante finales de la década de los 80, y fue cuando se pasó de que para cada supercomputadora tuviera que desarrollarse un SO a medida para ella, a aplicar sistemas operativos basados en UNIX. Este cambio fue debido a que llegó un punto en que el coste de desarrollar ese software específico era el mismo que el que se gastaba en hardware, cosa que hacía del todo inviable seguir por ese camino. También gracias a UNIX se podía proporcionar potencia de manera flexible a la supercomputadora, que era muy importante debido a los constantes cambios de las aplicaciones científicas en las que se utilizaban, o el cambio de hardware que había constantemente debido a la evolución de este.

El segundo gran cambio que hubo fue cuando se pasó, aproximadamente sobre el año 2003, de un dominio total de UNIX al dominio total de Linux, que es el SO que predomina en la actualidad. Este cambio fue debido a varios motivos: el primero era la flexibilidad que nos ofrece Linux, ya que este dispone de un kernel abierto con el cual hacer modificaciones y optimizaciones sobre él. Por otra parte, el coste de las licencias de Linux está muy por debajo de otros y en global es más rentable, ya que tiene una comunidad alrededor que ayuda y aporta de forma gratuita.

Linux es el SO predominante en la actualidad debido a varios factores, como por ejemplo que su coste es 0, que dispone de un kernel genérico, que tiene una gran escalabilidad que le permite adaptarse a grandes cargas fácilmente, que su instalación se basa en pequeños módulos, los cuales cada uno hace una tarea: con esto se consigue que si se modifica uno no afecte a los demás, también su código es abierto lo cual permite que en cualquier momento podamos modificar este ante cualquier cambio que se quiera o surja en la supercomputadora; otro punto es que detrás tiene una gran comunidad que da apoyo, y por último nos permite hacer pruebas de configuración de red sin la necesidad de tener que reiniciar el sistema.


Referencias[editar]

Enlaces externos[editar]