Sinusoide

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Función seno para A = ω = 1 y φ = 0.
Ejemplo de una frecuencia sinusoidal de 220 Hz

En matemáticas se denomina sinusoide o senoide a la curva que representa gráficamente la función seno y también a dicha función en sí. Es una curva que describe una oscilación repetitiva y suave.

Su forma más básica en función del tiempo (t) es:

La senoide es importante en física debido al hecho descrito por el teorema de Fourier que dice que toda onda, cualquiera que se sea su forma, puede expresarse de manera única como superposición (suma) de ondas sinosuidales de longitudes de onda y amplitudes definidas.[1]​ Por este motivo se usa esta función para representar tanto a las ondas sonoras como las de la corriente alterna.

Características[editar]

Figura 1: Parámetros característicos de una forma sinusoidal.

La sinusoide puede ser descrita por las siguientes expresiones matemáticas:

donde

  • A es la amplitud de oscilación.
  • ω es la velocidad angular; .
  • f es la frecuencia de oscilación.
  • T es el período de oscilación; .
  • ωx + φ es la fase de oscilación.
  • φ es la fase inicial.

Período (T) en una sinusoide[editar]

Es el menor conjunto de valores de x que corresponden a un ciclo completo de valores de la función; en este sentido toda función de una variable que repite sus valores en un ciclo completo es una función periódica, seno o no sinusoidal.

En las gráficas de las funciones seno-coseno el período es .

Amplitud (A) en una sinusoide[editar]

Es el máximo alejamiento en el valor absoluto de la curva medida desde el eje x.

Desde un punto de vista más técnico, la amplitud de la sinusoide es la norma del supremo de la sinusoide:

Fase inicial (φ) en una sinusoide[editar]

La fase da una idea del desplazamiento horizontal de la sinusoide. Si dos sinusoides tienen la misma frecuencia e igual fase, se dice que están en fase.

Si dos sinusoides tienen la misma frecuencia y distinta fase, se dice que están en desfase, y una de las sinusoides está adelantada o atrasada con respecto de la otra.

Carece de sentido comparar la fase de dos sinusoides con distinta frecuencia, puesto que éstas entran en fase y en desfase periódicamente.

Sinusoide y cosinusoide[editar]

La representación gráfica del seno y coseno son funciones sinoidales con fases diferentes

Obsérvese que la cosinusoide (coseno), o cualquier combinación lineal de seno y coseno con la misma frecuencia, se pueden transformar en una sinusoide y viceversa, ya que:

siendo

Si M<0, considérese

Para el caso particular :

es decir, la función seno y la función coseno es la misma sinusoide desfasada (desplazada) π/2.

Véase también[editar]

Referencias[editar]

  1. Cromer, Alan H. (1998). Física en la ciencia y en la industria. Editorial Reverté, SA. p. 294. ISBN 84-291-4156-1. Consultado el 18 de septiembre de 2017. 

Enlaces externos[editar]