Ronald Fisher

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Ronald Fisher
Biologist and statistician Ronald Fisher.jpg
Ronald Fisher
Nombre completo Ronald Aylmer Fisher
Residencia Inglaterra, Australia
Nacionalidad Británico
Campo Matemática, Estadística, Biología evolutiva, Genética, Ciencia,
Alma máter Universidad de Cambridge
Supervisor doctoral James Hopwood Jeans y F. J. M. Stratton
Estudiantes
destacados
C. R. Rao, D. J. Finney, y Walter Bodmer[1]
Premios
destacados
Medalla Royal en 1938
Medalla Guy en 1946
Medalla Darwin en 1948
Medalla Copley en 1955
Medalla Darwin-Wallace en 1958
Creencias religiosas Iglesia de Inglaterra
[editar datos en Wikidata]

Sir Ronald Aylmer Fisher (Londres, Reino Unido, 17 de febrero de 1890Adelaida, Australia, 29 de julio de 1962) fue un estadístico y biólogo que usó la matemática para combinar las leyes de Mendel con la selección natural, de manera que ayudó así a crear una nueva síntesis del Darwinismo conocida como la síntesis evolutiva moderna, y también un prominente eugenista en la parte temprana de su vida.

En 1919 empezó a trabajar en Rothamsted Research, una estación agrícola experimental donde desarrolló el análisis de la varianza para analizar sus datos inmensos de los cultivos cultivados desde los años 1840, y donde en los próximos años estableció su reputación como bioestadístico. También fue uno de los mayores fundadores de la genética de poblaciones. Entre otras cosas, resumió el principio de Fisher, propuso el denominado modelo de selección sexual runaway y la hipótesis del hijo sexy, e ideó la ecuación de Fisher, el valor reproductivo y la desigualdad de Fisher.

Anders Hald se lo llamó «un genio quién, casi a solas, creó las fundaciones por la ciencia moderna estadística»,[2] mientras Richard Dawkins lo nombró «el biólogo más grande desde Darwin. No solo fue lo más original y constructivo de los arquitectos del síntesis neo-Darwiniano. Fisher también fue el padre de la estadística moderna y diseño experimental. Así también se puede decir de él que dio a investigadores de la biología y la medicina con sus herramientas más importantes, y también con la versión moderna del teorema central de la biología."[3] Geoffrey Miller dijo de él: «Para los biólogos, fue un arquitecto de la ‹síntesis moderna› que utilizó modelos matemáticos para integrar las leyes de Mendel con las teorías de la selección biológica de Charles Darwin. Para los psicólogos, Fisher fue el inventor de varias pruebas estadísticas que se deben usar siempre que sea posible en las revistas psicológicas. Para los granjeros, fue el fundador de investigaciones en la agricultura, y salvó a millones de morir de hambre a través de programas racionales de cultivo.»[4]

Academia[editar]

Ronald Fisher en su ceremonia de graduación en la Universidad de Cambridge
Ronald Fisher en 1913

Fisher ganó una beca para estudiar matemática a la Universidad de Cambridge en 1909 y matriculó de honor en astronomía en 1912. En 1915 publicó un papel The evolution of sexual preference (La evolución de preferencia sexual)[5] sobre la selección sexual y selección intersexual. Fisher publicó The Correlation Between Relatives on the Supposition of Mendelian Inheritance en 1918, en lo cual se adelantó el modelo conceptual genética que muestra que variación continua (el primer uso del término varianza en la estadística) entre caracteres biológicos podría ser resultado de las leyes de Mendel, así reconciliando estas con la evolución gradual.[6] El papel también fundó la genética cuantitativa moderna y usaba el método estadístico de biometría para crear las fundaciones por la genética biométrica.

Se redescubrieron las leyes de Mendel en 1900 con la escuela de biometrica, dirigida por Karl Pearson, un seguidor de la idea de Charles Darwin que diferencias pequeñas importan mucho por la evolución, mientras la escuela mendeliana, dirigida por William Bateson, pensaba que la obra de Gregor Mendel se mostró que la evolución funcione con largas diferencias. Joan Box, la biógrafa e hija de Fisher, dijo que se había resuelto este problema ya en 1911.[7]

Junto con Sewall Wright y J. B. S. Haldane, Fisher es uno de los principales fundadores de la genética de poblaciones, que logró conciliar la metodología biométrica con la genética mendeliana, la primera fase de la Síntesis evolutiva moderna.

El interés de Fisher en la genética y la evolución se despertó en Cambridge, con la lectura de una serie de artículos de Karl Pearson ("Mathematical Contributions to the Theory of Evolution"). En la misma universidad, los Mendelianos eran la escuela dominante, y Fisher pronto estuvo convencido de que el mendelismo era el principal mecanismo de la herencia.

La cola del pavo real en vuelo, el ejemplo clásico del modelo de selección autoreforzante de Fisher.

Fisher sentó las bases de la genética poblacional, demostrando que la posibilidad de que una mutación incremente la adaptación de un organismo disminuye con la magnitud de la mutación y que las poblaciones más grandes conllevan más variación, de modo que tienen una mayor probabilidad de supervivencia. También propuso el Fisherian runaway que describe una conjetura de como la selección sexual, típicamente en un especie como el pavo real, crea la cola larga y colorida de varón como una ornamentación sexual.[8] [9] [10] [11] [12] [13]

En un libro de 1930, The Genetical Theory of Natural Selection (La teoría genética de la selección natural), Fisher resumió el principio de Fisher lo cual demuestra porque el ratio de sexo entre varones y hembras es casi siempre 1:1.[14]

En el modelo geométrico de Fisher explicó la distribución de los efectos de las mutaciones que puedan contribuir a la adaptación evolutiva.[15]

El vitral en el salón comedor de Gonville y Caius College, en Cambridge, Inglaterra, que conmemora a Ronald Fisher y representa un cuadrado latino, analizado por él en The Design of Experiments

Su respuesta al problema estadístico de los investigadores en biología y agronomía fue introducir y desarrollar ideas originales en el campo de la inferencia estadística y en el diseño de experimentos. Por ejemplo, descubrió la utilidad del uso de los cuadrados latinos para mejorar significativamente los métodos agrícolas, cuando se hallaba investigando la eficacia de los fertilizantes en el rendimiento de las cosechas e intentando que la calidad de la tierra no fuese un factor indeseable que influyese en el rendimiento de la cosecha.[16] También fue responsable del test exacto de Fisher y de la hipótesis nula, ambos aplicados en el experimento de la catadora de té, presentado en su libro The Design of Experiments (1935).

En 1936 introdujo el iris flor conjunto de datos como un ejemplo de análisis discriminante lineal.[17]

En su papel de 1937 The wave of advance of advantageous genes (La ola de avance de genes beneficiosos) se propuso la ecuación de Fisher en el contexto de la dinámica de poblaciones para describir la sembranza espacial de un alelo beneficioso y explorar sus soluciones de ola viajando.[18] Desde esto vino la ecuación de Fisher–Kolmogorov.[19]

En 1938 se resumió la Baraja Fisher–Yates con Frank Yates en su libro Statistical tables for biological, agricultural and medical research (Tablas estadísicas para invesigaciones de iología, agriculura y medicina).[20] Su descripción del algoritmo usaba lápiz y papel; una tabla de números aleatorios aportaba lo aleaorio.

A pesar de ser un oponente prominente de la estadística bayesiana, fue Fisher quién usó la palabra Bayesiana por primera vez.[21]

Él fue el primero en usar ecuaciones de difusión para intentar calcular la distribución de la frecuencia de alelo y la estimación de ligamiento usando métodos de máxima verosimilitud entre poblaciones.[22]

Biografía[editar]

Blue plaque de Fisher
Ronald Fisher como niño
Ronald Fisher

Fisher nació uno de dos gemelos en East Finchley, Londres pero el otro murió en el parto.[23] Tuvo tres hermanas y un hermano mayores.[24] Desde 1896 hasta 1904 vivió en Inverforth House, donde English Heritage puso un Blue plaque en 2002.[25] Su madre, Kate, murió cuando tuvo 14 años, y 18 meses más tarde su padre George, un socio en una empresa de subastadores comerciantes de artes finos, Robinson & Fisher,[26] perdió su negocio.

Debido a su pobre vista, lo mismo que lo causó el Ejército Británico a rechazarlo para la Primera Guerra Mundial,[27] él aprendió sin el uso de ni papel ni pluma, lo cual desarrollaba su habilidad en visualizar problemas geométricos. Sin embargo esta falta de escibir derivaciones por soluciones matemáticas, o pruebas. A los dieciséis años ganó la medalla de Neeld por matemática mientras se atendió Harrow School. En 1909 la escasez de sus recursos económicos y su capacidad académica le valieron una beca para cubrir su estancia en el Gonville y Caius College de la Universidad de Cambridge.

Durante la primera guerra mundial, Fisher atravesó momentos de extrema carestía económica. A pesar de las dificultades, comenzó a escribir reseñas de libros para la Eugenic Review e incrementó gradualmente su interés en el trabajo genético y estadístico.

En 1919 Fisher empezó a trabajar en la Rothamsted Experimental Station (Harpenden, Hertfordshire, Inglaterra). Allí comenzó el estudio de una extensa colección de datos, cuyos resultados fueron publicados bajo el título general de Studies in Crop Variation. Durante los siguientes siete años, se dedicó al estudio pionero de los principios del diseño de experimentos (The Design of Experiments, 1935), elaboró sus trabajos sobre el análisis de varianza y comenzó a prestar una atención especial a las ventajas metodológicas de la computación de datos (Statistical Methods for Research Workers, 1925).

En 1929 fue admitido en la Royal Society. El reconocimiento hizo crecer su fama y se convirtió en un investigador docente de prestigio internacional.

En 1933 se posesionó Rothamsted para ocupar la cátedra de Eugenesia en la University College London. En 1939, con el inicio de la guerra, la cátedra fue disuelta y se exilió a Rothamsted.

En 1943, después de atravesar una larga crisis económica y personal, ocupó la Cátedra de Genética en Cambridge. Sus trabajos sobre el cromosoma del ratón culminaron en 1949 con la publicación de The Theory of Inbreeding. En 1947 fundó junto con Cyril Darlington la revista Heredity.

Después de retirarse de Cambridge en 1957 se integró como investigador senior en el CSIRO en Adelaida, Australia. Murió de cáncer de colon en 1962.

Eugenesia[editar]

Fisher en 1912

Fisher se había convertido en uno de los fundadores más activos de la Sociedad de Eugenesia junto con John Maynard Keynes, R. C. Punnett y Horace Darwin. Un tercio de su libro The Genetical Theory of Natural Selection consistió en una síntesis de la literatura ya publicada al respecto, y a la aplicación de estas ideas al ser humano. Fisher atribuía el declive y la caída de las civilizaciones al hecho de que se había alcanzado un momento histórico en el que había comenzado a decaer la fertilidad de las clases altas. Utilizando los datos del censo de 1911 para Gran Bretaña, Fisher mostraba la relación inversa entre fertilidad y clase social. La causa, en su opinión, radicaba en el incremento del estatus social de las familias que no eran capaces de producir mucha descendencia, pero que habían crecido por las ventajas económicas asociadas a tener un número reducido de hijos. Para superar esta "lacra", Fisher proponía que las ventajas económicas de las que disfrutaban las familas pequeñas, desaparecieran por medio de subsidios estatales.

Entre 1929 y 1934 Fisher participó muy activamente en la campaña emprendida por la Eugenics Society a favor de la aprobación de una ley que permitiese la esterilización sobre la base de criterios eugénicos, una esterilización voluntaria y positiva que nunca se aplicase como castigo.

Controversias[editar]

Se opuso La cuestión racial del UNESCO, creyendo que las evidencias y la experiencia cotidiana mostraban que grupos de seres humanos difieren profundamente «en su capacidad innata por desarrollos intelectuales y emocionales»" concluyendo que el «problema práctico internacional es el de aprender a compartir los recursos de este planeta amigablemente con personas de naturaleza material», y que «este problema se nubla por esfuerzos bien intencionados que buscan minimizar las diferencias existen». La declaración modificada, titulada «The Race Concept: Results of an Inquiry» (1951) se acompañó con el comentario disconforme de Fisher.[28]

Fisher habló en público en contra del estudio de 1950 que mostraba que el tabaco causa cáncer de pulmón, arguyendo Post hoc ergo propter hoc (después de esto, por lo tanto, a consecuencia de esto), es decir, que una correlación positiva entre dos factores no implica causalidad entre ellos.[29]

Reconocimiento y legado[editar]

Fisher se adhirió al Royal Society en 1929 y se lo convirtió en Knight Bachelor la reina Isabel II en 1952 y premiado por la Sociedad Linneana de Londres con la Medalla Darwin-Wallace en 1958.

En 1950, Maurice Wilkes y David Wheeler usaron el EDSAC para resolver una ecuación diferencial que relaciona las frecuencias alélicas un en papel hecho por Fisher.[30] esto representa el primer uso de una computadora para resolver un problema en la biología. La distribución Kent (también conocida como la distribución Fisher–Bingham) se nombró así por Fisher y Christopher Bingham en 1982 mientras el meollo Fisher se lo nombró por él en 1998.[31]

El R. A. Fisher Lectureship es un premio que consiste de dar una conferencia, que se da cada año en América del norte que se estableció en 1963. El 28 de abril de 1998 un planeta menor, 21451 Fisher, se nombró por él.[32]

Bibliografía[editar]

Biografías[editar]

Referencias[editar]

  1. Ronald Fisher en el Mathematics Genealogy Project.
  2. Hald, Anders (1998). A History of Mathematical Statistics. Nueva York: Wiley. ISBN 0-471-17912-4. 
  3. Dawkins, R. (2010). WHO IS THE GREATEST BIOLOGIST SINCE DARWIN? WHY? Edge "Who is the greatest biologist since Darwin? That's far less obvious, and no doubt many good candidates will be put forward. My own nominee would be Ronald Fisher. Not only was he the most original and constructive of the architects of the neo-Darwinian synthesis. Fisher also was the father of modern statistics and experimental design. He therefore could be said to have provided researchers in biology and medicine with their most important research tools, as well as with the modern version of biology's central theorem."
  4. Miller, Geoffrey (2000). The mating mind: how sexual choice shaped the evolution of human nature, London, Heineman, ISBN 0-434-00741-2 (también Doubleday, ISBN 0-385-49516-1) p.54
  5. Fisher, R. A. (1915). «The evolution of sexual preference». Eugenic Review 7 (3): 184-192. PMC 2987134. PMID 21259607. 
  6. Box, Joan Fisher (1978) Ronald Fisher: The Life of a Scientist, New York: Wiley, pp 50–61
  7. R A Fisher: the life of a scientist Preface
  8. Fisher, R.A. (1915) The evolution of sexual preference. Eugenics Review (7) 184:192
  9. Fisher, R.A. (1930) The Genetical Theory of Natural Selection. ISBN 0-19-850440-3
  10. Edwards, A.W.F. (2000) Perspectives: Anecdotal, Historial and Critical Commentaries on Genetics. The Genetics Society of America (154) 1419:1426
  11. Andersson, M. (1994) Sexual selection. ISBN 0-691-00057-3
  12. Andersson, M. and Simmons, L.W. (2006) Sexual selection and mate choice. Trends, Ecology and Evolution (21) 296:302
  13. Gayon, J. (2010) Sexual selection: Another Darwinian process. Comptes Rendus Biologies (333) 134:144
  14. Fisher, R.A. 1930 The Genetical Theory of Natural Selection, Clarendon Press, Oxford
  15. Orr, Allen (2005). «The genetic theory of adaptation: a brief history». Nature Reviews Genetics 6 (2): 119-127. doi:10.1038/nrg1523. PMID 15716908. 
  16. Tony Crilly (2011). 50 cosas que hay que saber sobre matemáticas. Ed. Ariel. ISBN 978-987-1496-09-9. 
  17. R. A. Fisher (1936). «The use of multiple measurements in taxonomic problems». Annals of Eugenics 7 (2): 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x. 
  18. R. A. Fisher. The wave of advance of advantageous genes, Ann. Eugenics 7:353–369, 1937.
  19. Fisher 2
  20. Fisher, Ronald A.; Yates, Frank (1948) [1938]. Statistical tables for biological, agricultural and medical research (3rd edición). Londres: Oliver & Boyd. pp. 26-27. OCLC 14222135. 
  21. Agresti, Alan; David B. Hichcock (2005). «Bayesian Inference for Categorical Data Analysis». Statistical Methods & Applications 14 (14): 298. doi:10.1007/s10260-005-0121-y. 
  22. R. A. Fisher, and Balmukand, B. 1928. The estimation of linkage from the offspring of selfed heterozygotes. Journal of Genetics 20:79-92.
  23. Fisher biography
  24. Box, Joan Fisher (1978) Ronald Fisher: The Life of a Scientist, New York: Wiley, pp 8–16
  25. Aldrich, John. «A Blue Plaque for Ronald Fisher’s Childhood Home». Economics, Soton University. Soton.ac.uk. Consultado el 9 de diciembre de 2013. 
  26. Heritage: The Hampstead years of Sir Ronald Aylmer Fisher - most significant British statistician of the 20th century
  27. [onlinelibrary.wiley.com/doi/10.1002/0470011815.b2a17045/abstract Fisher, Ronald Aylmer]
  28. http://unesdoc.unesco.org/images/0007/000733/073351eo.pdf "The Race Concept: Results of an Inquiry", p. 27. UNESCO 1952
  29. Marston, Jean (8 de marzo de 2008). «Smoking gun (letter)». New Scientist (2646): 21. 
  30. Gene Frequencies in a Cline Determined by Selection and Diffusion, R. A. Fisher, Biometrics, Vol. 6, No. 4 (Dec., 1950), pp. 353–361
  31. Tommi Jaakkola and David Haussler (1998), Exploiting Generative Models in Discriminative Classifiers. In Advances in Neural Information Processing Systems 11, pages 487–493. MIT Press. ISBN 978-0-262-11245-1 PS, Citeseer
  32. JPL Small-Body Database Browser Source is NASA
  • Box, Joan Fisher (1978) Ronald Fisher: The Life of a Scientist, New York: Wiley, ISBN 0-471-09300-9.
  • David Howie, "Interpreting Probability: Controversies and Developments in the Early Twentieth Century" (Cambridge University Press, 2002)
  • Salsburg, David (2002) The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century, ISBN 0-8050-7134-2

Enlaces externos[editar]