Radián

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 12:09 29 ene 2016 por 147.83.144.106 (discusión). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.

El radián es la unidad de ángulo plano en el Sistema Internacional de Unidades. Representa el ángulo central en una circunferencia y abarca un arco cuya longitud es igual a la del radio. Su símbolo es rad. Hasta 1995 tuvo la categoría de unidad suplementaria en el Sistema Internacional de Unidades, junto con el estereorradián. A partir de ese año, y hasta el momento presente, ambas unidades figuran en la categoría de unidades derivadas.

Esta unidad se utiliza primordialmente en física, cálculo infinitesimal, trigonometría, goniometría, etc.

Un ángulo de 1 radián corresponde al arco de circunferencia cuya longitud es su radio. Una circunferencia completa corresponde a 2π radianes.

Definición

Un radián es la unidad de medida de un ángulo con vértice en el centro de un círculo cuyos lados son cortados por el arco de la circunferencia, y que además dicho arco tiene una longitud igual a la del radio.[cita requerida]

El ángulo formado por dos radios de una circunferencia, medido en radianes, es igual a la longitud del arco que delimitan los radios dividida entre el radio; es decir, θ = s/r, donde θ es el ángulo, s es la longitud de arco, y r es el radio. Por tanto, el ángulo completo, , que subtiende una circunferencia de radio r, medido en radianes, es:

Utilidad

El radián es una unidad sumamente útil para medir ángulos, puesto que simplifica los cálculos, ya que los más comunes se expresan mediante sencillos múltiplos o divisores de π.

Análisis dimensional

El radián es la unidad natural en la medida de los ángulos. Por ejemplo, la función seno de un ángulo x expresado en radianes cumple:

Análogamente los desarrollos Taylor de las funciones seno y coseno son:

donde x se expresa en radianes.

Equivalencias

  • La equivalencia entre grados sexagesimales y radianes es: π rad = 180°. Por tanto

1 radián = 57.29577951... grados sexagesimales y

1 grado sexagesimal = 0.01745329252... radianes.

  • La equivalencia entre grados centesimales y radianes es: π rad = 200g

La tabla muestra la conversión de los ángulos más comunes.

Grados   30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
Radianes 0 π/6 π/4 π/3 π/2 /3 /4 /6 π /6 /4 /3 /2 /3 /4 11π/6

Otras unidades de medida de ángulos convencionales son el grado sexagesimal, el grado centesimal y, en astronomía, la hora.

  • El Radián tiene una unidad derivada llamada radián por segundo (rad/s) (velocidad angular). Esta tiene una equivalencia con las rpm. Las equivalencias se pueden calcular fácilmente con la ecuación que sigue:
De rpm a π rad/s
que con la ecuación simplificada:
De π rad/s a rpm
que con la ecuación simplificada:

Conversiones entre grados y radianes

Ángulos de los polígonos más comunes medidos en radianes, expresados como fracciones de π.
Tabla de conversión entre grados sexagesimales y radianes.

Los grados y los radianes son dos diferentes sistemas para medir ángulos. Un ángulo de 360° equivale a 2π radianes; un ángulo de 180° equivale a π radianes (recordemos que el número π ≈ 3,14159265359…).

Las equivalencias de los principales ángulos se muestran en las siguientes figuras:

Para convertir grados en radianes o viceversa, partimos de que 180° equivalen a π radianes; luego planteamos una regla de tres y resolvemos.

  • Ejemplo A

Convertir 38° a radianes:

Primero planteamos la regla de tres. Nótese que la x va arriba, en la posición de los radianes.

Despejamos x, también simplificamos.

Por último obtenemos el equivalente decimal:

x = 0,6632 radianes.

  • Ejemplo B

Convertir 2,4 radianes a grados.

Primero planteamos la regla de tres. Nótese que la x va abajo, en la posición de los grados.

Despejamos x.

Por último obtenemos el equivalente decimal:

x = 137.5099°".

Véase también

Referencias

Bibliografía

  • Florian Cajori, 1929, History of Mathematical Notations, Vol. 2, pp. 147–148; Nature, 1910, Vol. 83, pp. 156, 217, y 459—460;