Partición (teoría de números)

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Diagramas de Young mostrando el número de particiones de los enteros del 1 al 8. Se asignan diferentes colores a cada entero. Por ejemplo, en verde, observamos que hay 5 particiones de 4.

En matemáticas discretas, una partición de un entero positivo n es una forma de descomponer n como suma de enteros positivos. Dos sumas se considerarán iguales si solo difieren en el orden de los sumandos.

De modo más riguroso, una partición de un número entero positivo n es una secuencia de enteros positivos tal que

.

Las posibles particiones de un entero n pueden visualizarse con los diagramas conocidos como diagramas de Ferrers o diagramas de Young.

Ejemplos[editar]

Las cinco particiones del número 4 serían:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

Y las once particiones del número 6 serían:

6 = 5 + 1 = 4 +2 = 4 + 1 + 1 = 3 + 3 = 3 + 2 + 1 =
= 3 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 +1
Tabla de Daniel JLJ.: Se muestra las particiones de n como suma de cantidades de la fila n+1. En ella patrones y propiedades son visibles.

Representación de las particiones[editar]

Hay dos métodos comunes para representar particiones: por un lado, los esquemas Ferrers, más tarde nombrados Norman Macleod Ferrers, y por otro los esquemas Young, renombrados después por el matemático británico Alfred Young. Ambos tienen varias convenciones posibles; aquí, se suele utilizar la notación la inglesa, con esquemas alineados en la esquina superior izquierda.

Esquemas Ferrers[editar]

La partición 6+4+3+1 del numero positivo 14 se puede representar mediante este diagrama:

******
****
***
*

Las 14 bolas están alineadas en 4 filas, cada una con el tamaño de la partición correspondiente.

A continuación, se muestra otro ejemplo con 5 posibles particiones del número 4:

******
****
***
*

       

Esquemas Young[editar]

Una representación alternativa de la partición de enteros es el esquema Young. En lugar de una representación con puntos,como el caso anterior, este usa cajas o cuadrados. Así, la partición 5+4+1 viene dada por:

Young diagram for 541 partition.svg

mientras que en el esquema Ferrer sería:

*****
****
*

Aparentemente está variación es trivial; sin embargo el uso de los esquemas Young facilita el estudio de simetría de funciones. Como consecuencia de la adyacencia de diferentes cuadrados, estos esquemas puede considerarse como un caso especial de polinomios.

Función de partición[editar]

En la teoría de números, la función de partición p(n) representa el número de posibles particiones de un número natural n, o lo que es lo mismo, el número de formas de representar n como suma de números naturales. Por convenio, p(0)=1, y p(n)=0 para los números negativos.

Los primeros valores de la función de partición, comenzando desde p(0)=1 son: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, … (secuencia A000041 en la OEIS).

Los valores de p(n) crecen muy rápidamente con el valor de n. De hecho:

  • p(100) = 190,569,292
  • p(200) = 3,972,999,029,388
  • p(1000) = 24,061,467,864,032,622,473,692,149,727,991 ≈ 2.4 × 1031

Una expresión asintótica de p(n) fue obtenida por G. H. Hardy y Ramanujan en 1918 y de forma independiente por J. V. Uspensky en el año 1920:

Particiones restringidas=[editar]

Tanto en combinatoria como en la teoría de números, las familias de particiones son objetos de estudio. A continuación se mostrarán algunas de las restricciones.

Particiones conjugadas y semiconjugadas[editar]

Si damos la vuelta al diagrama de la partición de 6 + 4 + 3 + 1, a lo largo de su diagonal obtenemos la partición de 14.

******
****
***
*
****
***
***
**
*
*
6 + 4 + 3 + 1 = 4 + 3 + 3 + 2 + 1 + 1

Transformando las filas en columnas obtenemos la partición 4 + 3 + 3 + 2 + 1 + 1 del número 14. Se dice por tanto que estas particiones son conjugadas. En el caso del número 4, la partición 4 y 1 + 1 + 1 + 1 son pares conjugados, y las particiones 3 + 1, y 2 + 1 + 1 son conjugadas mutuamente. Especial mención merece la partición 2 + 2, ya que es conjugada ella misma. Por tanto, decimos que una partición es semiconjugada. Dos características de estas particiones son:

  • Claim, en inglés. El número de particiones semiconjugadas es el mismo que el número de particiones con diferentes partes
  • Proof, en inglés. Cada parte puede ser doblada por el medio, de manera que se pueda formar una partición semiconjugada.
*****   ↔   ***
*
*

Referencias[editar]

  • Tom M. Apostol. Introducción a la teoría analítica de números. Reverté, 1984. ISBN 84-291-5006-4, 9788429150063. pg 382
  • Hardy and Wright (2008)

Enlaces externos[editar]