Par de bases

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Representación del par de bases adenina - timina de Watson-Crick

En genética un par de bases (en ingles bp) es una unidad que consta de dos nucleobases unidas entre sí por enlaces de hidrógeno. Forman los bloques de construcción de la doble hélice de ADN, y contribuyen a la estructura plegada de ADN y ARN. Dictados por patrones de enlace de hidrógeno específicos, los pares de bases de Watson-Crick (guanina-citosina y adenina-timina) permiten a la hélice del ADN mantener una estructura helicoidal regular que depende sutilmente de su secuencia de nucleótidos.[1] La naturaleza complementaria de esta estructura basada en parejas proporciona una copia de seguridad de toda la información genética codificada en el ADN bicatenario. La estructura regular y la redundancia de datos proporcionada por la doble hélice de ADN hacen que el ADN sea muy adecuado para el almacenamiento de información genética, mientras que el acoplamiento de bases entre el ADN y los nucleótidos entrantes proporciona el mecanismo a través del cual la ADN polimerasa replica el ADN y la ARN polimerasa transcribe ADN en ARN. Muchas proteínas de unión a ADN pueden reconocer patrones específicos de apareamiento de bases que identifican regiones reguladoras particulares de genes.

Los pares de bases intramoleculares pueden ocurrir dentro de los ácidos nucleicos monocatenarios. Esto es particularmente importante en las moléculas de ARN (por ejemplo, ARN de transferencia), donde los pares de bases de Watson-Crick (guanina-citosina y adenina-uracilo) permiten la formación de hélices bicatenarias cortas y una amplia variedad de interacciones no Watson-Crick (Por ejemplo, GU o AA) permiten que los ARN se plieguen en una amplia gama de estructuras tridimensionales específicas. Además, el apareamiento de bases entre ARN de transferencia (ARNt) y ARN mensajero (ARNm) constituye la base para los eventos de reconocimiento molecular que dan como resultado que la secuencia de nucleótidos de ARNm se traduce en la secuencia de aminoácidos de proteínas a través del código genético.

El tamaño de un gen individual o del genoma entero de un organismo se mide a menudo en pares de bases porque el ADN es generalmente de doble hebra. Por lo tanto, el número de pares de bases totales es igual al número de nucleótidos en una de las hebras (con la excepción de regiones monocatenarias no codificantes de telómeros). Se calcula que el genoma humano haploide (23 cromosomas) tiene aproximadamente 3,2 mil millones de bases de largo y contiene 20,000-25,000 genes distintos que codifican las proteínas. [2] [3] [4] Una kilobase (kb) es una unidad de medida en biología molecular igual a 1000 pares de bases de ADN o ARN. [5] La cantidad total de pares de bases de ADN relacionados en la Tierra se estima en 5,0 x 1037, y pesa 50 mil millones de toneladas. [6] En comparación, se ha estimado que la masa total de la biosfera es de 4 TtC (billónes de toneladas de carbono). [7]

Un Par de bases consiste en dos nucleótidos opuestos y complementarios en las cadenas de ADN y ARN que están conectadas por puentes de hidrógeno. En el ADN, adenina y timina así como guanina y citosina pueden formar un par de bases. En ARN, la timina es reemplazada por el uracilo, conectándose este con la adenina.

Medida de longitud[editar]

Las siguientes abreviaciones son usadas comúnmente para referirse a la longitud de una molécula de ADN/ARN:

  • pb = pares de bases (un par de bases mide alrededor de 3,4 Å)
  • kpb (o kb) = mil pb
  • Mpb (o Mb) = un millón de pb
  • Gpb (o Gb) = mil millones de pb

En el caso de una molécula de ADN/ARN monocatenario se suele emplear como medida de longitud el número de nucleótidos, abreviado nt (o knt, Mnt, Gnt), puesto que en estas moléculas las bases no se organizan en pares.

Adicionalmente, se usa el centimorgan para indicar distancias en los cromosomas, aunque el número de pares de bases que abarca esta unidad varía extensamente. En el genoma de los seres humanos abarca alrededor de un millón de pares de bases.[8] [9]

Referencias[editar]

  1. «Sequence-Dependent Variability of B-DNA». DNA Conformation and Transcription (Springer): 18-34. doi:10.1007/0-387-29148-2_2. 
  2. Moran, Laurence A. (2011-03-24). «The total size of the human genome is very likely to be ~3,200 Mb». Sandwalk.blogspot.com. Consultado el 2012-07-16. 
  3. «The finished length of the human genome is 2.86 Gb». Strategicgenomics.com. 2006-06-12. Consultado el 2012-07-16. 
  4. International Human Genome Sequencing Consortium (2004). «Finishing the euchromatic sequence of the human genome». Nature 431 (7011): 931-45. doi:10.1038/nature03001. PMID 15496913. 
  5. Cockburn, Andrew F.; Jane Newkirk, Mary; Firtel, Richard A. (1976). «Organization of the ribosomal RNA genes of dictyostelium discoideum: Mapping of the nontrascribed spacer regions». Cell 9 (4): 605-613. doi:10.1016/0092-8674(76)90043-X. 
  6. Nuwer, Rachel (18 July 2015). «Counting All the DNA on Earth». The New York Times (New York: The New York Times Company). ISSN 0362-4331. Consultado el 2015-07-18. 
  7. «The Biosphere: Diversity of Life». Aspen Global Change Institute. Basalt, CO. Consultado el 2015-07-19. 
  8. The Genetic and Rare Diseases Information Center - Office of Rare Diseases redirect
  9. Matthew P Scott, Paul Matsudaira, Harvey Lodish, James Darnell, Lawrence Zipursky, Chris A Kaiser, Arnold Berk, Monty Krieger (2004). Molecular Cell Biology, Fifth Edition. San Francisco: W. H. Freeman. p. 396. ISBN 0-7167-4366-3.